DA

NAVAL POSTGRADUATE SCHOOL =%
Monterey, California @

A246 067
A[\i\\l\\\\\ HNAVAN

THESIS

THE INTEGRATION SYSTEM
FOR
THE LOW COST COMBAT DIRECTION SYSTEM

by
Willie Kelly Bolick
and

Richard Thomas Irwin

September 1991
Thesis Advisor: Dr. Valdis Berzins

Approved for public release; distribution is unlimited.

92 2 12 174 32-03
//Iﬂﬂ/l;Wll/l//ii/ﬂl////l/7/l//;l/6

REPORT DOCUMENTATION PAGE

1a. (o] ECURITY CLASSIFICATION UNCLASSIFIED 1b. RESTRICTIVE MARKINGS

%2 SECURTTY CLASSIFICATION AUTRORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
25, DECLASSIFICATION/DOWNGRADING SCHEDULE | 4oetees oo s e ’
b- DECLA distribution 1s unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

8' NAME OF PERFORMING ORGANIZATION | 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
omputer Science Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Cods) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000
Monterey, CA 93943-5000 y >
8a NAME OF FUNDING/SPONSORING 8b. OF FICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
8¢c. ADDRESS (City, State, and ZIP Code) T0_SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENTNO. | NO. NO. ACCESSION NO.
11. TITLE (Include Security Classification)
THE INTEGRATION SYSTEM FOR THE LOW COST COMBAT DIRECTION SYSTEM
‘ ?‘EEW AUTHOR(S) © . ;
olick, wlhle welly; Irwin, Richard Thomas
TYPE QLREPORT 13b. TIME COVERED 14_ DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT
aster's lhesis From 09/90 1o 09/91 1991, September, 10 278

16. SUPPLEMENTARY NOTATIOR he views expressed 1n this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FED GROUP SUB.GROUP Combat Direction Center, Software Engineering, Integration System

]

18. ABSTRACT (Continue on reverse if necessary and identify by block number)]
In a world where changes in technology occur each minute, th~ demand for a hard Real Time embedded computer system deployed

on board naval ships not equipped with Naval Tactical Data System increases. As the demand increases, an important fact loonis, a new
approach to software development and system design is essential. The approach used in our research started with the requirement specifying
use of Ada as the design language with UNIX as the operating system. and selection of the commercial workstation rugged enough to
withstand shipboard requirements. The system requires standard power with no special interface equipment for adaptation to shipboard
application. Specific benefits include ease of maintenance and expansion of ongoing processes and applications, allowing the systemn to grow
as the need grows.

This study provides a detailed set of requirements. functional specifications, designs, and a prototype implementation of the Integration
System for such a system. The approach taken is to implement the basic features of a Combat Direction System (CDS) on a commercially
available microprocessor workstation. This Integration System for the Low Cost Combat Direction System meets all the requirements
specified by the Naval Sea Systems Command. The code provides the basic elements and is designed for integration of a database. a user
interface, and the ships sensors necessary to provide essential data to operate the system.

30, DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
[% UNCLASSIFIED/UNLIMITED [] SAME ASRPT. [7] DTIC USERS | UNCLASSIFIED

(;a HAM OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE [Include Area Cods) 22cé§féce SYMBOL
aldis Berzins (408) 646-2461 ¢

Approved for public release; distribution is unlimited

THE INTEGRATION SYSTEM
FOR
THE LOW COST COMBAT DIRECTION SYSTEM

by

Willie Kelly Bolick
Lieutenant, United States Navy
B.S., University of Arkansas, 1977
M.S., Arkansas State University, 1980
and
Richard Thomas Irwin
Lieutenant. United States Navy
B.S., University of Michigan-Flint, 1983

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1991

Authors: Jie, Z A ><—,;><«<_< o

Willig Kelly Bolick -
. V S, /e—K'e , ’ /\, M —
- Rlchard Thomas Irwin
)) .o 3 - (//
Approved By: L lLJ Ao
Valdis BJ@ZIHS Tl‘nesm Advisor
(SR \a

1 S% R
~ Robert B. McGhee, Chairman,
Department of Computer Science

1

ABSTRACT

In a world where changes in technology occur each minute. the demand for a hard
Real Time embedded computer system deployed on board naval ships not equipped with
Naval Tactical Data System increases. As the demand increases, an important fact looms,
a new approach to software development and system design is essential. The approach used
1n our research started with the requirement specifying use of Ada as the design language
with UNIX as the operating system, and selection of the commercial workstation rugged
cncugh to withstand shipboard requirements. The system requires standard power with no
special interface equipment for adaptation to shipvoard application. Specific benefits
include ease of maintenance and expansion of ongoing processes and applications,
allowing the system to grow as the need grows.

This study provides a detailed set of requirements, functional specifications, designs,
and a prototype implementation of the Integration System for such a system. The approach
taken is to implement the basic features of a Combat Direction System (CDS) on a
commercially available microprocessor workstation. This Integration System for the Low
Cost Combat Direction System meets all the requirements specified by the Naval Sea
Systems Command. The code provides the basic elements and is designed for integration
of a database, a user interface, and the ships sensors necessary to provide essential data to

operate the system.

Accasion For 1
NTIS CRA& v
DTIC TAB O
Urannounced U

Justification

B N SRR

1] N4 |
R BY
R Dizt ib.tion)
e i
Availa ity Cedes
‘r—__-‘. ’ . avm——
_ Aval Loaor
Dist Spesal

iii H‘l i-

THESIS DISCLAIMER
Appropnate credit 1s given for names used which are trademarks of various
corporations.
ADA is a registered trademark of the United States Government, ADA Joint
Program Office.
LMS 11 is a registered trademark of LOGICON.
SUN is a registered trademark of Sun Microsystems.
UNIX 1s a registered trademark of AT&T.
The views expressed in this thesis are those of the authors and do not reflect the

official policy or position of the Department of Defense or the United States Government.

TABLE OF CONTENTS

I. INTRODUCTION....ciitiiiciinninsnnsssisssnsssasssarsssesssssossessssssssnssssessassans 1
A. Historical background of the LCCDS........cccocoinnninci e 4
B. Project organization and goals.........cc.ccooviiiiiiniici e 5
C. Software engiNEering aPPrOACH.ccviicierieaieenieeireeeieeserae e seir e esseneseeeens 8
II. INTEGRATION SYSTEM RESEARCH ANALYSIS....... vressane 12
A. Requirements for LCCDS. ...t 12
B. Low Cost Combat Direction System context diagram..............c.ccccocoveeennnnne. 15
C. Requirements for the INtegration SYSeM.........c.ccorvireiriireriienireererseeeenaans 16
D. Integration system cOntext dIaZram........c.ccccuerieiririiins corierieeieneesieeeeere e 21
E. Integration system structure dlagram.........cocoeerveeieeeinieniinesrenicne e e 22
FUEVENELISE. ...t e e s s 23
I11. DESIGN OF THE INTEGRATION SYSTEM........ccceovvvvrennnnen 26
A. Interface specification for the integration System........c...ccooevvrevreieesreenennne, 26
B. Statement Of PUIPOSE.........cccoviiiieienieiiice e et 26
. CONSITAINLS ..ottt ettt ettt e st te s etbeseensae e s ese s 27
D. The INtegration SYSIEMcc.ooviveruiiiiiieeeeereeeeseesiese e ste e sreseerae s e ere e e 28
E. The object oriented database management System.............cccccevvvevvereeerenne.nn. 32
F.The link 11 receive only SYStem.............cc.ocvvmumiierveieerioneeeieeeeeeeeeeee e 36

IV. INTEGRATION SYSTEM/OODBMS ARCHITECTURAL

DESIGN AND IMPLEMENTATION....coicnnniinnniicnsnnnisssnsescssssssnes 38
A. Integration system moOdel..........ccocoiviiiiniiiniiic e 38
1. List of Integration System packages........ccccverreriiiecinineniciecesicec e 40

2 ADLSITact Data TYPES.....o.ocvieiiiieciiiecreeene ettt st 42

Q. TRACKuunnenerursncssssssnsssssssssessssassessssesessansesess 42

b. FILTER....coiviiniivnsncsreraisesssssessssassnssasssssasssnsssssasassassassesssasssasons 46

€. TRACK_DATABASE.............riiiranreiirinssinisassssssnnsssesnsssssosans 48

d. GLOBAL_POSITION.......ouvnsuscessmssnssssssassessasssssisssssssssssssssassssssans 49

e. LINK_TYPEvurisirsesenns ceresesnseurssnsarsene .49

f. ABSOLUTE_TIME 50

8. VECTOR_2uuuunvirnrnnrisissessnsessessesssssssesssanss .. 50

h. VECTOR3........ “ Y

3. Task Integration SYSLEM..........covorvinieniiireeriee et e 52

4. Task GPS_Update_TasK.........ccooeoiriiiiriiinice et 54

5. Task LInk_Cycle.....cooiiiiiiiiiii et 55

6. Task Process LINK _TTacK.......uooeiivieiiiieieeee e 55
B. Database MoOdel...........co..ooovomiiiiiiciece et 55
C.LINK T1MOMEL......oooioiiiiiiciiieiec ettt ettt 61
V. EVALUATION OF SYSTEM PERFORMANCEcccereereene 64
ALFUNCHONAL L.ttt et e 64
B. Timing charts for real time constraints teStINgG.........c.ccccocevverieveerieeneeirenennas 67

vi

VL. CONCLUSIONS ...uiiiinnininininennnasssississisissssssssesosssssssssssssesees 72

A. Recommendationscociviiiiiiiiiiiii et 72

B. Evolution Of the SYSIEM........ocoviiiiiiiiieiiic et e e eeees 73
APPENDIX A GUIDE TO DATA TYPESunnninenensnnsanens 75
APPENDIX B INTEGRATION SYSTEM: Ada Code..................... 81
APPENDIX C TRACK PACKAGE: Ada Code............cccouceruecurene.. 104
APPENDIX D FILTER PACKAGE: Ada Code.........coeereeirsensunane 154
APPENDIX E CPA PACKAGE: Ada Code..........c.ccocersursnisersonases 179
APPENDIX F VELOCITY PACKAGE: Ada Code..........cc0ceveeneene 185
APPENDIX G VECTOR 2 PACKAGE: Ada Code................ccc.... 187
APPENDIX H VECTOR 3 PACKAGE: Ada Code........cceeecvsurvrraens 195
APPENDIX I SPEED PACKAGE: Ada Code.........c.cceceeruesurcsnrsrnne 203
APPENDIX J ANGLE PACKAGE: Ada Code.........ccoosssevriranssesaene 205
APPENDIX K ABSOLUTE TIME PACKAGE: Ada Code........... 207
APPENDIX L DISTANCE PACKAGE: Ada Code........c.cccceerueenee. 217

Vil

APPENDIX N GLOBAL POSITION PACKAGE: Ada Code....... 220

APPENDIX O RELATIVE OBSERVATION PACKAGE: Ada

APPENDIX P RELATIVE POSITION PACKAGE: Ada Code... 231

APPENDIX Q TRACK DATABASE PACKAGE: Ada Code....... 232
APPENDIX R LINK PACKAGE: Ada Code...........ccoourerurrunccsucranes 239
APPENDIX S SYSTEM STATUS PACKAGE: Ada Code............ 243
APPENDIX T NAVIGATION_PACKAGE: Ada Code................. 246
APPENDIX U M_SERIES_MSG_PACKAGE: Ada Code............ 250
APPENDIX V PROCESS_LINK_TRACK_PACKAGE: Ada

COde...nnnnniriiinineicrninneiainnnsstiansstsssisssssasssnsstssssssessesssssssssssssssssasssssans 252
APPENDIX W RELATIVE_TIME_PACKAGE: Ada Code 255
APPENDIX X GPS CONNECTION CONSIDERATIONS........... 258
LIST OF REFERENCESoviinnsinnnnnaninsissssasssssssessessans 260
INITIAL DISTRIBUTION LIST....ccccccceuecvnisuncncsnscesseonsnssasransosones 264

Vil

LIST OF FIGURES

Figure 1: LCCDS CONFIGURATION DIAGRAM..........ccccoiiniiiiiiin, 5
Figure 2: NON-NTDS PLATFORM ..o 14
Figure 3: LCCDS CONTEXT DIAGRAMccocooiiiiiiiiii e, 15
Figure 4: INTEGRATION SYSTEM CONTEXT DIAGRAM..................... 21
Figure 5: INTEGRATION SYSTEM STRUCTURE DIAGRAM.................... 22
Figure 6: INTEGRATION SYSTEM EVENT LIST ..o 23
Figure 7: NAVIGATION SYSTEM EVENTLIST ..o 24
Figure 8: USER INTERFACE EVENTLIST ..o, 25
Figure 9: TRACK INPUT BY USER ... 29
Figure 10: TRACK INPUT BY LINK 11 oo, 30
Figure 11: TRACK INPUT BY OWNSHIP SENSOR ..o, 30
Figure 12: TRACK FILTER STRUCTURE DIAGRAM ... 31
Figure 13: DATABASE COMMUNICATIONS DIAGRAM ... 34
Figure 14: GLOBAL POSITIONING SUBSYSTEM............ccooiiicn. 35
Figure 15: LINK 11 RECEIVE ONLY CONTEXT DIAGRAM 37
Figure 16: PACKAGE DEPENDENCY DIAGRAM LEVELOcccoce.e. 38
Figure 17: PACKAGE DEPENDENCY DIAGRAM ..o 39
Figure 18: DATABASE STRUCTURES ... 60
Figure 19: DATA STRUCTURE DIAGRAM (LINK 11).......cccociiiiiiiiinn, 63
Figure 20: TIMING DIAGRAM 1 ... 68
Figure 21: TIMING DIAGRAM 2 ... 68
Figure 22: TIMING DIAGRAM 3 .. 69
Figure 23: TIMING DIAGRAM 4 ... 69

Figure 24: TIMING DIAGRAM 5 i, 70

Figure 25 TTVING DIAGRAM 6 ..o 70

Figure 26: TIMING DIAGRAM 7 ..., 71

Figure 27: GPS CONNECT ..ottt 258
X

ACKNOWLEDGEMENTS

We owe a great debt of gratitude to many people who have inspired and encouraged
us during the process of writing this thesis. Special thanks goes to our families, for their
support and patience. Also, we would like to mention a few individuals for the time, energy,

and advice they gave on behalf of our efforts to formulate our concepts, research, and code

the final product:

Mr. Walter Landaker (NPS. Monterey)
Mr. John Locke (NPS. Monterey)

Mr. Russell H. Whalen (NPS, Monterey)
Mr. Mike Williams (NPS, Monterey)
Mr. Albert Wong (NPS. Monterey)

X1

X1

I. INTRODUCTION

The primary goal of the combat direction center is to ensure the individual fighting
capabilities of a single ship. Each ship, however, not only supports the task force, but
enhances it to make the task force a single fighting element capable of overcoming any
enemy. The Navy has met the challenge of the 1990’s with the development and
implementation of the AEGIS System. Combatants without this AEGIS capabilities are
being upgraded to meet these standards and capabilities when and where it is possible. In
some cases this is impossible, for instance, most non-combatants at present have no
automated capabilities whatsoever The Navy had the choice of either starting from scratch
and fitting these ships from ground up or developing a new system that was capable of
meeting specific requirements, still holding the cost of development and implementation to
an affordable level. The Navy has projected its desire to develop a system that can be
installed on non combatant ships or to augment existing systems on Combat Direction
System(CDS) equipment ships. This implementation would be accomplished in Ada and
would reflect the specifics of five increments as detailed in Reference 1. The introduction
of the Low Cost Combat Directions System (LCCDS) [Ref. 1, 2] into the field of research
and development launched the need for a new look at the way Combat Direction Systems
function.

The increased complexity of warfare in this decade and the next requires a system
capable of timely response and rapid recovery. The LCCDS, a Real Time System, will meet
this challenge. Receiving data from a number of sensors, the system will process raw data
into formatted information which is both displayed and stored in the database for future
recovery and use. Utilizing the Global Positioning System (GPS) the LCCDS will
continuously monitor and update ownship position. Receive only link 11 provides a tactical

picture of the ship’s environment. Equally significant is the user interface, which provides

a variety of inputs from the operator and creating a well balanced, functional, and
informative system capable of handling the most critical situatior.

The LCCDS system will be implemented on a commercially available
microprocessor-based workstation. Selection of a microprocessor is relatively straight
forward.

1. The system must meet the NAVSEA requirements for shipboard use.

2. It must be capable of handling our software requirements.

The Sun Microsystems SPARCstation 2 will provide the capabilities required for the
shipboard and real time environment of the LCCDS. The 4.2 BSD UNIX operating system
has been suggested [Ref. 3] and meets the requirements necessary to manage the Verdix
Ada software development system. Verdix Ada will be the implementation language for the
Low Cost Combat Direction Software System. The integration must accomplish an
interface between existing shipboard navigation sensors, link 11, and the object oriented
database management system. These interface points with navigation and link 11 are not
interactive, and allow the integration system only to receive data. The user interface will
receive data from the integration system while the database will support both retrieval and
storage of data via the integration system.

The LCCDS will accomplish all these tasks plus several additional services in just
seconds vice minutes and with a much greater accuracy and reliability than manual
methods. This capability is made possible by the careful selection of a powerful,
inexpensive microprocessor workstation. One of the projected users of the LCCDS is on
board ships without Naval Tactical Data System(NTDS), where at present handling of
combat support is accomplished manually, using only maneuvering board and status boards
kept updated by individual watch standers. The addition of the LCCDS to one of these
platforms would leave the Commanding Officer and his watch standers free to accomplish

their mission in a more accurate, safe, and expedient manner.

N~

The integration system is a vital element(module) of the Low Cost Combat Direction
System(LCCDS) project which is sponsored by Naval Sea Systems Command(NAVSEA).
The LCCDS project is currently divided into three major research and development areas.

1. The integration system, whose primary function is confining and filtering
information from several sources, including ownship sensors, Global Positioning System
and receive only link 11. To monitor this information and detect impending significant
events, such as closest point approach of other vessels, shoals, aircraft fly over, and
navigation hazards. To provide, to the user, a means of continuous access to necessary
navigation data, such as ownship fix information, position of intended movement, and
waypoint locations. To provide an archival record of the available tactical information for
both immediate and historical use.

2. The user interface module, which provides the user with onscreen visual elements
to provide tactical information in an effective form and enables the user to manage the
LCCDS. The user interface receives track information, and environmental information
requested from the integration system.

3. The navigation system of the LCCDS, which will provide ownship navigation and
maneuvering data.

The objective of this thesis is to describe the research and development of the
integration system for the LCCDS. In conjunction with the development, a design and
implementation phase for the integration system as a part of the LCCDS is discussed. A
prototype of the integration system with full details on integrating the user interface, the
navigation system, and an object oriented database is implemented in Ada. The integration
system meets all the requirements of a real time systems as required in the design

specifications [Ref. 1].

A. HISTORICAL BACKGROUND OF THE LCCDS

The traditional or conceptual meaning of a ship’s combat system is typically the men
and equipment which provide the ship with its offense and defense capabilities. However,
some subsystems such as communication and navigation are not in the spotlight as often as
the weapons system. Both subsystems accomplish their mission in a routine manner and
unless disabled or inoperative are forgotten or de-emphasized when combat systems are
discussed. These systems, which provide the eyes and ears for the ship, play an equally
important role in the ship’s overall combat system. It is the composite of the ship’s elements
and personnel processing either manual or automated information and providing support to
the overall task/mission of the platform that is important. During the late 1950’s and since
the Naval Tactical Data System (NTDS) has played the role of tactical data integration.
Since its evolution out of a need for faster and more accurate information NTDS has been
plagued with restrictions and hang-ups. As technology increased, the need to improve the
system increased, yet many of the outdated systems were not replaced, and heavy
requirements for manual intervention and control continued to slow and restrict the system.
Uncoordinated changes in the interfacing system and weapons systems cause a make shift
and continuous catch up mode.

Today we have several different generations of these modified/improved systems in
the fleet [Ref. 4]. Ongoing study and thirty years of experience has caused the development
and deployment of the Combat Direction System which is not totally separated from, but
has substantial increases in capabilities over the NTDS. The role of the Combat Direction
System is composed as follows [Ref. 5].

1. An automated Database Management System capable of managing tactically

significant tracks.

2. A combination of necessary element to form a combat system whose primary

purpose is to support the combat direction center.

B. PROJECT ORGANIZATION AND GOALS

The Low Cost Combat Direction System research and development is under the
supervision of the Naval Sea Systems Command. Research is ongoing at the Naval Post
Graduate School, Monterey, CA., Naval Ocean Systems Command, San Diego, CA., and

Massachusetts Institute of Technology, Cambridge, MA.

HH

-
}—1

@——l

SN

Radio
Comm

Global Positioning System

Ships
Sensors

SPARC Station 2
Figure 1 : LCCDS CONFIGURATION DIAGRAM

The LCCDS project as shown in Figure 1, is divided into three basic areas of
development:

1. The hardware evaluation and procurement.

2. The development of the software packages.

3. Testing and evaluation for Real Time performance

The integration system Project, an element in areas 2 and 3 of the LCCDS, is divided
into four major areas of research and development.

1. A system capable of providing an interface with the user, developing an interactive
communication between user and system.

2. A system capable of interfacing with the navigation system and providing ownship
navigation data.

3. A system capable of interfacing with Link 11 receive only and providing for display
network track data.

4. A system capable of data storage and retrieval utilizing data received from sensor
interfaces, and direct input from the user.

The project sponsor goals for the LCCDS integration system are as follows:

1. Locate, evaluate, and procure the hardware necessary to meet the shipboard
requirements.

2. Use Ada as the implementation language.

3. Integrate an object-oriented Database Management System.

4. Integrate a manual tracking and identification capability.

5. Integrate a receive only link 11 capability.

6. Integrate an on ship navigation and maneuvering capability, along with display of
shore line maps.

7. Integrate an autotracking capability [Enclosure 1, Ref. 1]

8. Test, evaluate, and employ the system.

The detailed initial problem statement can be defined in terms of a high level LCCDS
program description. Develop the prototype of a Low Cost Combat Direction SoftWare
System (LCCDSWS) for a Low Cost Combat Direction System (LCCDS) that implements
the basic features of Combat Direction System “Model 5”on a commercially available
microprocessor based workstation [Ref. 1,2,3]. This is to be accomplished in respect to the
five increments as outlined in Enclosure 1 Reference 1. Based on these guidelines this
phase of the research must then start at the beginning, laying into place each part of the
puzzle, with a focus on ensuring that no piece will place a constraint on any other piece. In
fact, our goal is that each piece will enhance all the remaining pieces. To start, we had to
select a system and the software environment for the system. The next steps are to define
the requirements for the integration system, write the functional specifications linking the
user interface and navigation modules, then implement the above in Ada.

In order for the integration system to meet these requirements, specific goal
definitions for the integration system have been established.

Goal 1. The integration system must provide a track database system, which is capable

of accessing and updating track information in Real_Time.

Goal 2. The integration system must be able to parse incoming Global Positioning

System(GPS) data and extract track/ownship location data in Real_Time.

Goal 3. The integration system must be able to parse incoming link 11 messages and

extract track data in Real_Time.

Goal 4. The integration system must be able to parse incoming sensor related

messages and extract track data in Real_Time.

Goal §. The integration system must be able to provide the user with relevant tactical

data external to the platform, for screen display.

Goal 6. The integration system must be able to provide the user with the ability to

customize and organize data to meet the specific needs of the individual platform.

Goal 7. The integration system must be able to provide the user 'vith the ability to limit

the number of tracks and/or elements for display. Any or all of this data must be

available for retrieval and display. The user will by means of a filter package

communicate to the integration system what is to be displayed.

Goal 8. The integration system must be able to provide the user with the ability to

store, manage, and display geographical regions, paths, and waypoints to meet the

specific needs of the user.

Goal 9. The integration system must be able to provide the user with ownship data to

include closest point of approach(CPA) time, bearing, and range. CPA data provided

may be between any track and ownship or between any two tracks, and must be in

Real_Time.

LT Bolick focused on requirements analysis, system specifications and the overall
system design constraints. LT Irwin concentrated on the development of the software
components. Both contributed to the system architectural analysis, software development,

implementation and design.

C. SOFTWARE ENGINEERING APPROACH.

The software development process has been defined by several different and capable
authorities as having different and varied meanings. Yet all seen to agree on some specific
points. The first and most overwhelming point is that when starting a project, the specific
requirements must first be defined, researched and redefined. The second point is, that a set
of specifications must be developed and a design architecture presented before proceeding
with development of the project. Following these well established guidelines [Ref. 7]the
model for the LCCDS integration system was developed.

1. Requirements analysis [Ref. 3].

2. Functional specifications.

3. Architeci.ral design.

4. Implementation.

5. Testing and Evaluation.

The first state in the LCCDS design, the requirements analysis, has been accomplished
by the team of Seveney and Steinberg [Ref. 3]. It is our intention, however, to refine these
broad requirements to more specific ones directly related to the integration system. At this
point we focus on the initial problem statement: The thrust of this research is to provide
detailed requirement analysis for the software portion of the LCCDS. We refer to this as
the Low Cost Combat Direction Software System (LCCDSWS).

The Department of Defense(DOD) and Navy have taken great care in the development
of specific guidelines for the design and implementation of software to be used by DOD.
Directives to be considered in the integration system software require effort to be placed in:

1. Accomplishing the task (completion of the integration system).

2. Completion in a timely manner.

3. Completion at no significant additional cost to sponsor.

4. Producing a top quality product.

Using the spiral model of software development the following sequence of events have
been established for the LCCDS integration system design, review, and acceptance.

1. Review and evaluation of requirements specified by the sponsor(NAVSEA).

2. Review and evaluation of requirements document (Masters Thesis by Seveney and

Steinberg) to determine if there exist conflicts with the NAVSEA requirements.

3. Requirements Analysis Review(RAR) and consistent needs identified.

4. Needs analysis and new needs identified.

5. Completion of specifications with a review and evaluation of requirements and any

new needs are identified.

6. Functionality review for first design.

7. Design review and reevaluation of needs and requirements. If necessary, apply

changes to design.

8. Design accomplished with testing in progress. Review for requirements and needs

by sponsor. Changes due to requirements and needs identified are applied at this time.

Bugs are removed from software. Complete code review and code documentation.

Module testing accomplished.

9. Design complete and ongoing testing and evaluation standards. Implementation of

a working prototype. Complete system testing with indcpeﬁdcnt quality assurance

verification.

10. Delivery to sponsor, and ongoing maintenance and upgrade. (debugging in

progress).

Research and design of the integration system conforms with the following DOD and
Navy directives.

1. Department of Defense Military Standard 2167-A Defense System Softviare

Development [Ref. 25].

2. Department of Defense Military Standard 2168 Defense System Software Quality

Program [Ref. 26).

3. American National Standard Institute Military Standard 1815A-1983 Reference

Manual for the Ar.\ Programming Language [Ref. 27].

4. DOD-STD_480, Configuration Control_Engineering changes, Deviations, and

waiver [Ref. 28].

5. MIL-STD-483,

6. MIL-STD-490, Specification Practices [Ref. 30].

7. MIL-STD-1388, Logistic Support Analysis

The following Data Item Description(DID):

1. DI-MCCR-80012, Software Design Document

10

2. DI-MCCR-80014, Software Test Plan

3. DI-MCCR-80017, Software Test Report

4. DI-MCCR-80025A, Software Requirements Specification

5. DI-MCCR-80026, Interface Requirements Specification

Data Item Description, DI-MCCR-80025A, Software Requirements Specification,
specifies the engineering and qualification requirements for a computer software
configuration item (CSCI). As the basis for the design, format, data generation, and formal
testing of this software project, our team of designers, used the Software Requirements

Specification noted above.

11

II. INTEGRATION SYSTEM RESEARCH ANALYSIS

A. REQUIREMENTS FOR LCCDS.

The initial problem statement can best be stated by paraphrasing the Enclosure 1 to
Reference 1, “Statement of work for Low Cost Combat Direction System (LCCDS)”

which outlines the five increments that the LCCDS project is to be divided.

In increment one:

1. A computer system is to be selected

2. Design and develop an object-oriented Database Management System.

3. Design and develop a display/graphics, which provides the user with his own
customized screen format allowing interactive operations with the system.

4. Display tracks and ownership data.

5. General response time to user “should be no greater that one half second”.

In increment two:

1. Integrate manual tracking and track identification capability.

2. System maintains ownership track.

3. Use standard display symbols as list in Reference 1.

4. Display and assign speed and bearing as both values and leaders, with four second
updates on all elements of the each track in the database.

3. Allow for additional/amplifying track information to be displayed at the users
request.

6. Allow the user to change track identification number, category, and identity.

7. Allow for a unlimited number of tracks in the system.

12

In increment three:

1. Integrate recesve only link 11.

In increment four:

1. Provide ownship data. Navigation and maneuvering data from ownership sensors.
2. Provide up to six steaming routes.

3. Provide up to 50 waypoints per steaming routes.

4. Provide closest point approach data.

a. Provide ownship CPA with any track.

b. Provide CPA between any two tracks.

c. Provide display of CPA bearing lines on position display.

In increment five:

1. Integrate an organic auto tracking capability using (TBD) radar interface.

Issues in achieving common operations for Combat Direction Systems was addressed
in accordance with the guidelines of Reference 2. The specific concemns faced by this
research study and the issue we considered most important is safeguarding consistency,
while preserving independent configurations for each user. A list of considerations by

which to achieve this concermns are listed below.

1. What track characteristics should be specified in statements. Should the track follow
the basic NTDS format.
2. What actions should the system take in the event of malfunction or error detected

and what actions are left to the user.

13

3. Which of the common display and control formats of the model 5 Combat Direction

System should be used.

4. What safeguards should be built into the system, more specifically the integration

system, to insure consistent operations.

5. What accuracy and precision of track data is required.

Communications between the integration system and the elements of the LCCDS is a
critical link in considering development of a Real_Time system. There cannot be any delay
in the system functions due to restrictions in the communications media. Therefore care and
time was used in the selection and implementation of the communication software interface
between the three elements user interface, Link 11, navigation interface, and the integration
system as seen in Figure 2.

It is important to keep these requirements in mind, not allowing them to drive the
research, but to provide some guidelines and restrictive boundaries within which to

work.These questions and more are addressed and answered in this research.

LINK 11 GPS

SENSORS

INPUT DATA IS RECIEVE ONLY
Figure 2 : NON-NTDS PLATFORM

14

B. LOW COST COMBAT DIRECTION SYSTEM CONTEXT DIAGRAM:

The integration system is divided into four major areas of research and development

as seen in Figure 3. A complete discussion of each of these areas will be given later in this

document.
User
Interface
Link 11 Integration Navigation
Interface System A System

Ships
Sensors

Figure 3 : LCCDS CONTEXT DIAGRAM

15

C. REQUIREMENTS FOR THE INTEGRATION SYSTEM

The requirements for the integration system appeared straightforward at first, but on
closer examination we soon discovered that each of the more general requirements as
outlined by Reference 1, Enclosurel must be expanded to meet our specific needs. Listed

below are the general requirements:

1. Use Ada as the implementation language.

2. Integrate an object-oriented Database Management System.

3. Integrate a manual tracking and identification capability.

4. Integrate a receive only link 11 capability.

5. Integrate an on ship navigation and maneuvering capability, along with display of
shoreline maps.

6. Integrate an autotracking capability [Enclosure 1 of Ref. 1].

Expansion of these requirements is interlocked with the general design of the complete
LCCDS. We began by looking at the qualities of Ada as the implementation language.
Because of the Real_Time requirement for the LCCDS, parallel processing is a must.

The basic design feature of the Ada language is centered around the use of “Oojects”
for program design. An object is a data structure consisting of a unique identifier and an
associated set of functions and procedures that operate on the object. This meaning of the
term object may not be universally agreed upon, but it is our working definition, and will
be used throughout the design of the integration system. These operators are the only
allowed means of manipulating the object. A number of advantages follow from this design
approach. Objects and their associated functions and procedures form a natural boundary

along which to subdivide the integration system. Because the structure of a data type is

16

hidden from all but its associated operators, changes to the structure have a limited impact
on the overall system. This feature greatly simplifies program modification and
maintenance.

Ada provides a construct called a “Package” that allows the programmer to
encapsulate objects and their associated functions and procedures. In addition, it allows for
“private” types and “limited” private types that further restrict encapsulation so that objects
of these types, while visible to the program parts, can only be manipulated by the functions
and procedures it has referenced. A combination of these features permit the programmer
to hide data structure implementation and create “abstract” data types. The use of the
attribute private means that the programmer cannot use any knowledge of how the data type
is to be implemented in the integration system. This allows for user changes in the basic
features of the LCCDS but maintaining the integrity of the integration system. The
integration system will take full advantage of each of these features.

Ada provides a “Task” construct, which is a feature that allows the programmer to
divide a program into logically concurrent operations with synchronization between each
or all of the operations. In addition to forming the basis for Real-Time operations, Tasks
also provide a means of increasing processing efficiency in a parallel processor
environment like the integration system for the LCCDS. Like packages, the task has a
specification part and a body, however, the specification part is used solely to declare the
synchronization point or entry point to the task. The entry point is used to indicate where
the message is received or transmitted by the task.

The discussion of Ada packages and tasks would not be complete without an
explanation of the Ada features “with” and “use”. The with and use clauses are the
mechanism by which the integration system environment is made available to all the
elements contained within. The with clause tells the compiler that the programmer intends

to use data types, procedures, and functions defined somewhere in the package specified.

17

The use clause tells the compiler that the programmer desires to reference the data types,
procedures, and functions located somewhere in the package specified.

The use of data abstraction provides for the integration system several advantages:

1. A clearer conceptualizing of the problem or procedure being written and
incorporated into the integration system.

2. More reliable data security.

3. A more reliable means of avoiding side effects.

4. Easier modification of the implementation as changes or updates occur.

Making use of or reuse of algorithms that have been implemented previously is a
major advantage of program abstraction. Another advantage of this programming style is
that it can be modeled more readily using mathematical techniques, thus opening up greater
possibilities for correctness proof methods. Correctness proof is a major concern of the
integration system since lives will depend on its effectiveness and piecision.

The Ada language provides high level facilities for expressing concurrent algorithms
parallel processes. These facilities are tasks, and along with subprograms, packages, and
generic units, they constitute the physical unit make up of which our programs will be
composed. Synchronization between any two of these task occurs when the task issuing an
ENTRY call and the task ACCEPTING an entry call establish a rendezvous. The two tasks
communicate with each other in both directions during this rendezvous.

Several task can rendezvous with each other, in groups of two or more, at any instant.
If several tasks need to rendezvous with the same task, then these entry calls are placed in
a queue associated with the entry and accepted in first in-first out order. By this method
careful control of the tasks and their order of execution can be artificially established. By
this method also we can set a system of priorities without using the Ada task specification

“priority”.

18

Deadlock is a concern: NO DEADLOCKS is a requirement for the integration system.
Therefore it is absolutely essential to build deadlock prevention into the system. This idea
is one that draws a large amount of concern and articles written on the subject. There are
two basic fields of belief in the area, one is that deadlocks cannot be prevented and must be
handled when they occur. The other is that deadlocks can be prevented and with careful
planning and design, and that prevention is preferable to control. In our case, if a task(one)
makes an entry call to a task(two) that is in the entry call queue of a task(three), which is in
the entry queue of task(one), then deadlock occurs. The design of the system is such that
this situation does not occur. Clearly, we have chosen to handle deadlocks by prevention,
but have also considered controls and exceptions if the situation arises. Other methods and
controls will be discussed later in the document. Research on formal methods and tools to
ensure that designs are free from deadlocks is in progress [Ref. 24].

As a subunit within the integration system the database has only one type of object,
Track. There does exist, however, several classes of the object. The database features space
for unlimited instances of each class, limited only by the amount of swap space available
to the workstation.

The integration system must provide a function by which the user can manually enter
a track. Incorporated in this task will be provisions allowing the user to change certain
attributes of the Track but, restricting these changes to Track identification number and
other amplifying information.

The integration system must receive from the Global Positioning System ownship fix
(Geographic_Position) data which consist of a Latitude, Longitude, and a Greenwich Mean
Time(GMT). A Global_Position is the Latitude converted to an angle from the equator and
the Longitude converted to an azimuth from the Greenwich Meridian. This data string must
be translated and formatied into system data format. The ownship system data is to be

stored in the database as track zero and used to define the ownship track. Ownship track is

19

used by the system to compute course, speed, closest point of approach, range, and bearing
information on a user designated track.

The integration system must receive Link 11 data transmitted via the standard fleet
UHF/HF communication channels. The data as received is a cryptogram and not usable by
the integration system, therefore the data must be deciphered and translated into system
format. To accomplish this translation we propose to use a system already being used in the
fleet. This translation is a major project in itself and not a primary requirement for the
prototype version of the LCCDS. The system proposed to translate the Link message input
to M-series messages is the Link Monitoring System (LMS 11r) which receives the Link
11 data directly from the communications link and with a cryptographic unit (KG-40) in-
line, translate the data into English M series messages which can be sent to the link 11
processor inside the integration system. The link 11 processor translates the M series
messages to a string of system formatted characters representing a relative position from
DLRP of each contact. The integration system will then store each of these contacts in the
database as a track.

A subset of these tracks determined by a filtering process designated by the user, can
then be graphically displayed. The filter system is a collection of individual filters that can
be combined together by utilizing the mathematical expressions and and or. This
combination filter acts as a single filter and forms a TACPLOT, which is used by the
integration system to send to the user for graphic display those tracks and situations
requested. Filters are discussed in more detail later in this document. The shoreline maps
and auto tracking capability listed in the NAVSEA requirements are not a part ot this

research project.

20

D. INTEGRATION SYSTEM CONTEXT DIAGRAM
Figure 4 is the context diagram of the integration system. The diagram is used to
illustrate the direction and paths of communication between the various elements of the

integration system, the user interface, the link handler, and the navigation handler.

rrocess link
ink 11 handler

update
database

active database |

save
data

USER
INTERFACE

historical

database
process ;
query retrieve

history

Figure 4 : INTEGRATION SYSTEM CONTEXT DIAGRAM

21

E. INTEGRATION SYSTEM STRUCTURE DIAGRAM

Figure § is the integration system structure diagram illustrating the individual sections
or functions the integration system is naturally divided. Each section may contain several
individual and unique functions or task which together accomplish the desired mission of

that section.

INTEGRATION
SYSTEM
TRACK HISTORICAL CPA
FILTER DATABASE PROCESSOR
TRACK LINK 11 NAVIGATION
HANDLER HANDLER DATA
HANDLER

Figure § : INTEGRATION SYSTEM STRUCTURE DIAGRAM

22

F. EVENT LIST:

A list of external events that cause a response by the integration system is shown in

Figure 6.

1.Simulus: Receive ownship data from the Navigation interface .
Response: Interpret and store ownship position(fix) in database.
2, Stimulus: Receive track data from Link 11 NTDS.
Response: Interpret and store NTDS tracks in database.
3. Stimulus: Receive filter from the user.

Response : Provide for graphic display of tracks specified by filter.

4. Receive new track data from the user.
Response: Interpret and store in database.
S. Stimulus: Receive a request to provide CPA data from the user.

Response: Interpret and provide forgraphic display CPA data.

6. Stimulus: Receive track information request from the user.

Response: Provide for the user track identification number and category of

track specified.

7. Stimulus: Receive flag from navigation interface indicating loss

of sensor signal.

Response: Provide user with alarm specifying loss of sensor signal.

Figure 6 : INTEGRATION SYSTEM EVENT LIST

List of events which will occur in the navigation system as a response to the action of

one or more sensors are found in Figure 7.

1. Stimulus: Receive ownship fix data from the Global
Positioning System.

Response: Translate GPS data to an Ada string of characters and
transmit via communication link and RS 232 communication port
to the integration system.

2. Stimulus: Receive ownship course from ships gyroscope.
Response: Transmit to integration system.

3. Stimulus: Receive water depth under the keel from

ships fathometer.

Response: Transmit to integration system.

4. Stimulus: Receive ownship speed made good through the water

from ships pitsword.

Response: Transmit to the integration system.

§. Stimulus: Receive contact information from the ships radar.
Response: Translate data to an Ada string of characters
representing a global position and transmit to the integration

system.

Figure 7 : NAVIGATION SYSTEM EVENT LIST

24

List of events that originate from the user or integration system and trigger a response

from the user interface are found in Figure 8.

1. Stimulus: Receive updated tacplot from integration system.
Response: Provide graphic display of tracks specified by filter.

2. Stimulus: Receive update of track category and amplifying data
from integration system.

Response: Provide graphic display of track category and amplifying
data.

3. Stimulus: Receive track data from the integration system.

Response: Provide corrections to local tracks.

4. Stimulus: Receive CPA information from the integration system

on any specified track and ownship track.

Response: Provide graphic display of CPA data.

5. Stimulus: Receive CPA information from the integration system
on any two specified tracks other than ownship.

Response: Provide graphic display of CPA data.

6. Stimulus: Receive initialize the system from integration.

Response: User enters desired system setup.

Figure 8 : USER INTERFACE EVENT LIST

III. DESIGN OF THE INTEGRATION SYSTEM.

A. INTERFACE SPECIFICATION FOR THE INTEGRATION SYSTEM

One approach to the specification of concurrent programs is called behavioral. It starts
by describing the possible events and actions, series of events and/or series of responses, in
which part or all of a program may engage. The first big step was to take these descriptions
and translate them into executable specifications. With this partial tool for designing
concurrent programs, the construction of the integration system begin. At each level of the
integration system we conducted a comparison of the different implementation methods
available. Particularly noteworthy is that we found it readily easy to translate these
implementation ideas into Ada code. More specifically, by using rendezvous and
nondeterministic “Select” statements of Ada Tasking ensure the parallel processing we
seek.

The integration system shall provide detailed information on all aspects of the tactical
situation and system control, operating parameters and status. This information is obtained
from the Tactical Database which shall be an object-oriented database management system
written in Ada. The system will provide a flexible, easy to use, window based user
interface. A navigation interface will provide the system with ownship information and

track data, as well as navigation data.

B. STATEMENT OF PURPOSE

The purpose of the integration system of the LCCDSWS is to integrate the user
interface, the navigation system, the receive-only link interface 11 and the object- oriented
database management system. The system is to maintain and display a real time picture of

the tactical environment for the specific platform on which the system is located.

26

The results of this integration will store in the database all tracks, including the
ownship track which includes ownship Navigation and Maneuvering data. The integration
system will use filters provided by the user to determine the contents of the tacplot which

1s sent to the user interface for display.

C. CONSTRAINTS

Software development for Department of Defense must adhere to Department of
Defense Military Standard 2167-A Defense System Software Development, 29 February
1988[Ref. 25]. Department of Defense Military Standard 2168 Defense System Software
Quality Program, 29 February 1988[Ref. 26]. and American National Standard Institute
Military Standard 1815A-1983 Reference Manual for the Ada Programming Language. 17
February 1983[Ref. 27].

Specified in the Requirement Analysis [Ref. 3] Seveney and Steinberg thesis. are the
LCCDSWS., prototype constraints. These constraints will be used as a guideline for the
constraints definitions of the integration system. The performance constraints may be
evaluated at several different levels and in several different contexts but we will focus on a
limited view from the standpoint of the integration system only.

1. Resource constraints: The basic resources are available in the LCCDS team and in
the faculty and staff of the Naval Postgraduate School.

2. Implementation constraints: Hardware available 1s the Suns Microsystems
Sparcstation 2 machine. The system is configured 1n a stand-alone unit configuration with
four each RS-232 communication ports used for interface with the Link, GPS, and ships
sensors. Operating System as defined in reference 2 1s derived from the UC Berkely

Version 4.2 BSD and Bell Lab’s UNIX system version 32v [Ref. 32].

In accordance with Reference 1 and The Department of Defense policy the
implementation language for the system will be Ada. In this particular application Verdix
Ada 6.0 is used.

3. Performance constraints: Performance for the LCCDS workstation include
Real_Time data processing and display. In this application system performance has an
upper bound: Reference 1, Enclosure 1 defines Real_Time to mean that response time must

be less than or equal to four seconds.

D. THE INTEGRATION SYSTEM

The design of the LCCDS is not that of an embedded system, however, the integration
system contains functions and procedures not visible to the user. These functions and
procedures, in some cases found in Ada Tasks, perform a vital role in the overall systems
response and behavior. The design of the integration system as a Real_Time embedded
system requires the use of parallel processing.

In order to meet the time constraints specified in Reference 1, special attention
must be given to the order and magnitude of the Ada programs and packages which make
up the integration system. The integration system is the main processing element of the
LCCDS. Other elements such as the navigation system, Link 11, ships sensors have a one
way communication link and only provide data to the integration system. The user
interface element has a two way communication link with the Integration System, but is
used to display, retrieve, and add to the data already in the system. The integration system
stores the data received from these sources in the active database (located in RAM). The
data is stored in a data structure called Track, which is defined in the database section of

this document.

28

The system as configured can retrieve the data to perform various operations and
functions on Track as required by the user or predefined by the system. The requirements
for the system, list a number of these operations and functions [Ref. 1, 2].

1. Provide a filtered set of tracks to the user interface for graphic display.

2. Provide the user with the ability to select the category and type of track to be

displayed.

3. Provide the user with closest point of approach data between any pair of tracks

selected by the user.

4. Track position to be dead reckoned using current track bearing and speed.

5. Allow the user to make changes to tracks in the database.

6. Provide the user with safe maneuvering data.

The integration system receives track data from three sources:

1. Manual input from the user as illustrated in Figure 9.

TRACK
track data PACKAGE

Integration

DATABASE

Figure 9 : TRACK INPUT BY USER

2. Via communications interface with link 11 as illustrated in Figure 10.

NTDS
link 11
track data

Link 11
handler

|

Database

Figure 10 : TRACK INPUT BY LINK 11

3. Via communications interface with the ships sensors(radar) as illustrated in Figure

I1.

Sensor
handler

sensor
track data

Database

Figure 11 : TRACK INPUT BY OWNSHIP SENSOR

30

The prime objective of the LCCDS is to provide a clear and concise tactical picture for
the ship commander. This tactical picture must be presented in a manner which accurately
represents the tactical problem (situation) comprehensibly to the user. The integration
system allows the user freedom to concentrate on the situation via user predefined filters.
Regardless of the mission or tactical situation, a ships sensors provide only raw data. Even
when this data is graphically displayed relative to ownship, it is still only useful when the
user applies intelligence to the overall situation.

A simplified view on the process of collecting, filtering, and displaying tactically

significant data in a Real Time environment is in Figure 12.

INTEGRATION
SYSTEM

Figure 12 : TRACK FILTER STRUCTURE DIAGRAM

31

The integration system provides navigation, link 11, and user interface inputs to the
database. The input is not direct, but through the integration system, allowing for control
of the data stored in the database. A specific package is written inside the integration system
to interface with the navigation system. The navigation system package provides a facility
for converting GPS data into an ownship track. The link 11 package processes the link 11
tracks and after filtering the track base, stores all accepted tracks in the database. Local or
user generated tracks is part of the track package.

The integration system consist of a main Ada task that makes entry calls to the various
tasks, functions, and procedures that collectively makeup the integration system. The
simplified function or purpose of the integration system is to receive data from various
sources and translate/parse this raw data input into data the user_interface can use for
graphic display and store a duplicate set of data in the database.

The user has available a set of options by which to manipulate the system filter
algorithm. The user may select a single atomic filter or a series of atomic filters and by
applying the mathematical and and or statements combine these filters to create a single
and filter. This single and filter provides a template which the integration system uses to
retrieve only tracks that meet the specific properties of the Tacplot. The Tacplot filed with
the tracks that meet the filter are sent to the user interface for graphic display of the tactical
situation as illustrated in Figure 12. How the data is displayed is not a consideration of the

integration system.

E. THE OBJECT ORIENTED DATABASE MANAGEMENT SYSTEM

The requirements for the LCCDS specify design and implementation of an object-
oriented database system. The purpose of this database is to manage the tactical information
store of the LCCDS. The information is used to display a tactical picture of a ship’s local

environment and provide pertinent answers to queries defined by the user. The data

32

structure and methods of the database, as well as the supporting software components are
to be implemented in Ada. The features included in our database are based on the following
considerations:

1. Real_Time performance: Safety and Maneuverability of the ship, as well as tactical

decision-making demands Real_Time performance.

2. Maintainability: Using an object-oriented approach to the database ensures the

methods and procedures defined on an object will not be affected if the data structure

representing the object requires alteration.

3. Transaction concurrency: In order to maintain Real_Time performance, parallel

execution of separate tasks must occur. The parallel processing of these tasks,

however, introduces potential of deadlock situations that should be prevented.

The design of our database responds to the above considerations utilizing:

1. Variant Ada records {Ref. 33] to define a single common object class. The main data

structure holding the instances of the defined objects allows for rapid retrieval and ease

of updating. Locking protocols prohibits conflicting transactions on the database.

2. Ada tasks to handle the transaction concurrency problem.

We start our explanation of the record structure by defining the catalog, also known as
the database description or schema [Ref. S, 10]. The catalog contains the following
information:

1. The constraints.

2. Usage standards and application programs.

3. Descriptions and user information.

33

Track
Package

1 Link 11
- Handler
Active ~
Database —
Historical
Database

Figure 13: DATABASE COMMUNICATIONS DIAGRAM

The system provides the user with the ability to find a specified track in the database,
add a track, alter a track, drop a track, send a track to history, restore an altered track to
database, see Figure 13.

As discussed previously the Global Positioning System (Trimble-4000 S) illustrated
in Figure 14 transmits the current fix data of ownship to the navigation handler via an RS-
232 communication port via an RS-232 communication port. The navigation handler parses
this data and translates it to a LCCDS usable format. The integration system receives from
the navigation handler a string of characters which represent the position of ownship at a

specific time.

34

Figure 14 : GLOBAL POSITIONING SYSTEM

The string of characters is parsed and converted into a Global_Observation for ownship.
Data is received from the GPS at one second intervals. The navigation handler stores each
of these data_input_strings in a buffer ready for the integration system to read. When the
integration system makes a request to read data the navigation handler locks the buffer and
does not allow the GPS to perform its normal one second overwriting of the data in the
buffer with new data.

When the integration system has completed the read function the navigation handler
unlocks the buffer and allows the GPS to overwrite the buffer with the next full string of
data. An interval of every four seconds is required for the integration system to update the
ownship Global_Observation.

Link 11 tracks are received by the system and converted to the track type. The system
stores the tracks in the database. Filtering of these Link 11 tracks occurs in two stages, first
as the tracks are received and deciphered, the second when the user designed filter is used

to fill the Tacplot for graphic display of tracks.

35

F. THELINK 11 RECIEVE ONLY SYSTEM

A vital feature in the LCCDS is the ability to receive all contact information reported
by the task force on the NTDS Link 11. The data gathered and displayed from this source
will give the Commanding Officer a clear tactical picture of all elements in the force. The
Link provides a measure of security for ships maneuverability and tactical defense. This
study did not consider a two-way communication link because the value of two-way
communication to a non-combatant ship is unclear. However, data from ownship sensors
could be useful to other combatant ships.

we propose to utilize software and hardware from an outside source to translate the
NTDS Link 11 data into source code the system can use. The Link 11 interface with the
integration system consists of the link 11 handler designed inside the integration system
and communicating directly with it is the external Link 11 data translator and decoder. The
link handler is an Ada function which breaks a string of characters into the individual parts
of the data type Track and stores the array of parts in a buffer waiting for the integration
system to lock the buffer and read out the data. After reading the contents of the buffer the
integration system unlocks the buffer. The link handler then repeats the process.

Once this translator package is in hand, we can proceed to design an Ada package
capable of parsing the NTDS Link 11 code string, M messages, and breaking them into
there individual elements. Once the individual elements are available the system can
convert them into a Track record. A new LCCDS track number is be assigned to each track
with a pointer from the NTDS track number to its associated system track number. The
Track record is be stored in the active database as a track. We limited our work on the link

handler to developing a specification.

36

NTDS
Link 11 system

Active ‘
DATABASE

Figure 15 : LINK 11 RECIEVE ONLY CONTEXT DIAGRAM

The system recommended to decipher and translate the Link 11 data into a string of
correct LCCDS message format characters is the Link Monitoring Set 11 r (LMS 11r)
system as illustrated in Figure 15. The LMS 11r system is a Link 11 receive only Data
Terminal Set which can provide a continuous sting of two each sixteen bit parallel
messages of the Link 11 data. These messages are then passed through the crypto- unit
(KG-40 for LOS - UHF/HF and KG-84 for SATCOM - UHF)) which decodes the messages
to M series messages. Using the format prescribed in OP-SPEC 411.2 these M series
messages can be translated in the system format (English Text) by the integration system
link 11 processor package. Because of the classification (CONFIDENTIAL) of the link 11
material a removable hard drive or tape drive is recommended for secondary memory. At
this point a discussion of the protocol for Link 11 data receipt, MIL-STD-1397 input data,
would be appropriate if this research paper was classified. Because the paper is unclassified
we will leave this discussion to the follow-on research and development of the Link 11

receive only system.

37

IV. INTEGRATION SYSTEM /OODBMS
ARCHITECTUAL DESIGN AND
IMPLEMENTATION

A. INTEGRATION SYSTEM MODEL

The integration system software is designed as a set of Ada packages. This concept
allows for greater versatility and application of the Ada programs and functions developed.
The integration system provides navigation, link 11, and user inputs to the database. The
input is not direct, but through the integration system, allowing for control of the data stored
in the database. A specific package is contained in the integration system to interface with
the navigation system.

A general discussion of the packages and how we applied them to the overall design
concept of the integration system follows Figure 16 which is a package dependency
diagram of the integration system. In Figures 16 and 17 nodes are Ada packages, and the

arrows depict Ada with statements.

USER_INTERFACE PROCESS_LINK _
PACKAGE TRACK PACKAGE
INTEGRATION_

SYSTEM PACKAGE
NAVIGATION SHIP_SENSORS
PACKAGE PACKAGE

Figure 16: PACKAGE DEPENDENCY DIAGRAM LEVEL 0

38

USER_
INTERFACE_PKG

CPA_PKG

TACPLOT_PKG

NTEGRATION_
SYSTEM_PKG

ESS_LINK_]
TRACKS_PKG

NAVIGATION_PKG

SYSTEM_
STATUS_PKG

TRACK_
PATAB ASE_PKG

7|

GLOBAL_
POSITION_PKG

!

TRACK_PKG

!

GLOBAL_
OSERVATION_PK(

Y

ABSOLUTE_
TIME_PKG

Y

RELATIVE_
TIME_PKG

VECTOR _2_PKG

LINK_PKG

M_SERIES_
MSG_PKG

\ FILTER_PKG

SHIP_
SENSORS_PKG

VELOCITY_PKG

PDISTANCE_PKG

RELATIVE_
POSITION_PKG

VECTOR_3_PKQ

SPEED_PKG

ANGLE_PKG

39

Figure 17: PACKAGE DEPENDENCY DIAGRAM

L

LIST OF INTEGRATION SYSTEM PACKAGES:

INTEGRATION SYSTEM PACKAGE: The purpose of the package is to
receive data or information from various sources, translate/parse the raw
data input into integration system formatted data, store the data in the
database as a track, and send the data to the user_interface for graphic
display of the tactical situation. The package also performs time
synchronization functions for external tasks.

FILTER PACKAGE: The purpose of the package is to represent policies
for choosing which tracks are entered in the database and which are shown
on the graphic display. The policies are defined by the user via the
user_interface.

TRACK PACKAGE: The purpose of the package is creation, deletion, and
modification of tracks in the database.

CPA PACKAGE: The purpose of the package is computation of the closest
point of approach between any two tracks specified by the user.

VELOCITY PACKAGE: The purpose of the package is to represent the
velocity of a specified track. Velocity is defined as a two dimensional
vector, representing course and speed.

VECTOR_2 PACKAGE: The purpose of the package is to provide a
means of using two dimension vectors for various applications.

VECTOR_3 PACKAGE: The purpose of the package is to provide a
means of using three dimension vectors in various applications.

SPEED PACKAGE: The purpose of the package is to represent speed in
knots or yards per second.

ANGLE PACKAGE: The purpose of the package is to offer a means of
representing an angle in radians or degrees and functions to return attributes
of the angle.

DISTANCE PACKAGE: The purpose of the package is to offer a means
of representing distance in yards or nautical miles.

40

ABSOLUTE TIME PACKAGE: The purpose of the package is to provide
the integration system constant access to system time. Defines the abstract
data type Absolute_Time and associated functions. System time can be
displayed as Greenwich Mean Time or Local Mean Time depending on user
needs.

RELATIVE TIME PACKAGE: The purpose of the package is to
represent the length of the (interval)between two events.

GLOBAL POSITION PACKAGE: The purpose of the package is to
represent geographical positions on the earth. Input and output in terms of
latitude and longitude are provided. Internally uses an angle from the
equator and an angle from the Greenwich Meridian.

GLOBAL OBSERVATION PACKAGE: The purpose of the package is
to represent a global_observation(global_position, velocity, and time) for a
track. The global observation indicates current position of the track.

RELATIVE POSITION PACKAGE: The purpose of the package is to
compute the bearing and range of a track from a reference track. Bearing is
defined as an angle from true north and range is the distance between the
two tracks.

RELATIVE OBSERVATION PACKAGE: The purpose of the package
is to define a data type Relative_Observation that stores a Relative_Position
and an Observation_Time.

TRACK DATABASE PACKAGE: The purpose cf the package is to
provide a means to store the tracks in the system. To accomplish this the
package creates a linked list of tracks.

LINK PACKAGE: The package converts M series messages into system
formatted tracks. These tracks are stored in the database as link controlied
tracks.

4]

 NAVIGATION PACKAGE: The purpose of the package is to keep track
of ownship position via a communication port that accepts global
positioning system data. The received data is translated into integration
system track format and stored in the database as ownship current location.

* SYSTEM STATUS PACKAGE: The purpose of the package is to provide
the system with a means to enable or disable the communication link
between the system and the ships sensors. The package provides the
integration system with a means of indicating a up and operating or down
and off status of the ships sensors.

» M SERIES MSG PACKAGE: The purpose of the package is to provide a
means of activating a communication port to read in the link M series
messages from the LMS 11r and storing the messages in a buffer.

* PROCESS LINK TRACKS PACKAGE: The purpose of the package is
to read from the buffer each M series message. Using the LINK package
procedures/functions, each M series message is converted to an integration
system link track. The LINK tracks are processed as integration system
tracks and stored in the database.

2. ABSTRACT DATA TYPES:
a. TRACK

(1) Description: A TRACK represents the observations and descriptions of

a tactically significant contact. The implementation of the TRACK type is given in

Appendix C, p. 103. There are several different kinds of TRACKSs; each of which is

identified by its TRACK_CATEGORY (see Function TRK_CATEGORY). The possible
values of TRACK_CATEGORY are:

a. SURFACE_PLATFORM: In nautical terms, a surface platform is

defined as any man-made vessel designed to operate on the surface of the water. For a more

detailed definition refer to Reference 2.

42

b. SUBSURFACE_PLATFORM: In nautical terms, a subsurface
platform is defined as any man-made vessel designed to operate below the surface of the
water. For a more detailed definition refer to Reference 2.

c. AIR_PLATFORM: An air platform is any man-made object designed
to operate above the earth’s surface. The platform has an ALTITUDE. For a more detailed
definition refer to Reference 2.

d. UNKNOWN: An unknown TRACK_CATEGORY is defined as any
TRACK whose TRACK_CATEGORY has not yet been established by the user.

The TRACK_CATEGORY of an UNKNOWN TRACK can be changed
via the operation CHANGE_TRACK_CATEGORY.

e. REGION: REGIONSs consist of two types, CIRCLE and POLYGON.
A REGION is stored in the database as a TRACK. A CIRCLE contains a center
(GLOBAL_POSITION) and a radius (DISTANCE). A POLYGON contains from three to
twenty vertices (GLOBAL_POSITIONS) that form the POLYGON. The REGION may be
relative to a GLOBAL_POSITION which does not have motion or relative to a TRACK
that has VELOCITY. A REGION may represent an operating area in which the platform
operates or may represent a restricted area in which platform movement is constrained or
forbidden.

f. PATH: A PATH consists of a series of WAYPOINTs
(GLOBAL_POSITIONS) and is stored in the database as a TRACK. A time is assigned to
each WAYPOINT and represents a desired time to arrive at the WAYPOINT. The array is
passed to the user_interface for graphic display upon request. PATHs can be used to
represent Path of Intended Movement(PIM) along which the platform travels. A PATH can
be stored in history for later reference.

g. MAN_IN_WATER: A GLOBAL_POSITION used to mark the
geographic location of a man lost overboard.

h. SPECIAL_POINT. A SPECIAL_POINT TRACK is defined as a

single object, real or imaginary, man-made or natural, and not otherwise designated as

43

surface platform, subsurface platform, air platform, or unknown. A SPECIAL_POINT
TRACK is further defined by its SPECIAL_POINT_CATEGORY. The possible values of
a SPECIAL_POINT_CATEGORY are NAV_HAZARD, WAYPOINT, or GENERAL.
All SPECIAL_POINT TRACKs have, as attributes, VELOCITY, and
(GLOBAL_POSITION). A WAYPOINT is generally defined as an imaginary point at a
specific GLOBAL_POSITION with an additional attribute TIME_TO that defines
OWNSHIP’s expected/desired arrival time to the WAYPOINT. A NAV_HAZARD is a
SPECIAL_POINT that represents a physical object whose size and/or location presents a
real hazard to navigation. A GENERAL SPECIAL_POINT is a SPECIAL_POINT not
otherwise designated as a WAYPOINT or NAV_HAZARD. Its description may be
elaborated in the TRACK’s AMPL_INFO.

(2) Autributes: The following are attributes of TRACK:

a. Function TRACK_ID_NUMBER (TRK: TRACK) return
NATURAL,;

TRACKSs are uniquely identified by their TRACK_ID_NUMBER.
TRACK_ID’s are unique throughout a mission, to make sure that the historical record is
unambiguous. Every TRACK has a TRACK_ID_NUMBER regardless of its
TRACK_CATEGORY. The TRACK_ID_NUMBERs are generated by the
TRACK_TYPE and are a one up count process (see the variable TRACK_ID in the private
part of the package TRACK_PKG specification. The correspondence between Link
TRACK_ID’s and TRACK_ID_NUMBER is maintained by the LINK_TABLE data
structure in the package LINK_PKG.

b. TRACK location:

Function = CURRENT_POSITION (TRK: TRACK) return
GLOBAL_POSITION;

CURRENT_POSITION returns the GLOBAL_POSITION of the
TRACK’s dead-reckoned position from the last GLOBAL_OBSERVATION

44

Function RELATIVE_BEARING (REFERENCE_TRACK,
TARGET_TRACK: TRACK) return ANGLE;

Returns the bearing angle from the course of the
REFERENCE_TRACK to the TARGET_TRACK.

Function TRUE_BEARING (REFERENCE_TRACK,
TARGET_TRACK: TRACK) return ANGLE;

Returns the bearing angle from true north to the TARGET_TRACK.

Function MOST_RECENT_OBSERVATION (TRK: TRACK) return
ANGLE;

Returns the TRACK ’s last entered GLOBAL_OBSERVATION.

¢. TRACK motion:

Function TRUE_VELOCITY (TRK: TRACK) return VELOCITY;

Returns TRACK’s true course and speed relative to the surface of the
earth as calculated in its MOST_RECENT_OBSERVATION.

Functiorn TRUE_COURSE (TRK: TRACK) return ANGLE;

Returns TRACK’s true course calculated in its
MOST_RECENT_OBSERVATION.

Function TRUE_SPEED (TRK: TRACK) return SPEED;

Returns TRACK’s true speed calculated in its
MOST_RECENT_OBSERVATION.

Function TRACK_RELATIVE_VELOCITY (REFERENCE_TRACK,
TARGET_TRACK: TRACK) return VELOCITY;

Returns TARGET_TRACK’s relative motion (course and speed)
relative to the given REFERENCE_TRACK.

Function RELATIVE_COURSE(REFERENCE_TRACK,
TARGET_TRACK: TRACK) return ANGLE;

Returns TARGET_TRACK ’s relative course as seen from the reference

TRACK.

45

d. TRACK intelligence information:

Function AMPL_INFO (TRK: TRACK) return AMP_STR.VSTRING;

Returns a string of characters that more clearly defines the identification
or mission of the platform represented by the TRACK.

Function =~ TRACK_IDENTITY (TRK: TRACK) return
IDENTITY_TYPE;

Returns the TRACK’s IDENTITY_TYPE, which can have the values
UNKNOWN, FRIENDLY, HOSTILE, NEUTRAL.

Function PLATFORM_CLASS (TRK: TRACK) return
V_AND_C_STR.VSTRING;

Returns a string of characters that define the class of the contact.
Examples are Cruiser or Aircraft carrier.

Function VESSEL_NAME (TRK: TRACK) return
V_AND_C_STR.VSTRING;

Returns a string of characters that represent the platforms name. An

example is USS EDSON.

(3) Creation Operations A TRACK object is created by procedure
CREATE_TRACK Appendix C, p. 130. A required parameter for this operation is,
understandably, its first GLOBAL_OBSERVATION.

(4) Update Operations The package, TRACK_PKG, contains numerous
functions and procedures to modify/update the attributes of TRACK objects as described

in Reference 2.

b. FILTER

(1) Description: A FILTER is a predicate on TRACKSs that defines a subset
of all possible TRACKSs. FILTERs are used to represent display policies. They describe a

set of characteristics that a TRACK must possess in order to be graphically displayed.

46

Complex FILTERs are defined in terms of simpler AND_FILTERSs. A FILTER predicate
is a disjunction (or) of one or more AND_FILTERs; that is, if a TRACK meets all
requirements of at least one of the AND_FILTERs, it is accepted for display.
AND_FILTERs are composed of simpler ATOMIC_FILTERs. An AND_FILTER
predicate is a conjunction (and) of zero or more ATOMIC_FILTERs; a TRACK satisfies
an AND_FILTER if it meets all requirements of its component ATOMIC_FILTERs. Each
ATOMIC_FILTER defines a single relational constraint on a TRACK. The
implementation of the FILTER type is given in Appendix D, p. 153.

(2) Attmibutes: ATOMIC_FILTERSs have the form [FILTER_CATEGORY
RELATION CONSTANT]. The possible values of FILTER_CATEGORY are
DISTANCE_FILTER, TRACK_CATEGORY_FILTER, and PLATFORM_IDENTITY _
FILTER.

a. DISTANCE_FILTER describes a TRACK’s distance from a
reference TRACK or the TRACK’s altitude (if air).

b. TRACK_CATEGORY_FILTER describes a TRACK’'s
TRACK_CATEGORY.

c. PLATFORM_IDENTITY_FILTER describes a TRACK’s
IDENTITY_TYPE (UNKNOWN, HOSTILE, FRIENDLY, NEUTRAL).

d. RELATION identifies the FILTER_CATEGORY’s relation to the
input CONSTANT. The possible values of a RELATION are EQUAL, NOT_EQUAL,
LESS, LESS_OR_EQUAL, GREATER, and GREATER_OR_EQUAL. An example
ATOMIC_FILTER is “TRACK_CATEGORY EQUAL SURFACE_PLATFORM.” This
means that one requirement (ATOMIC_FILTER) of an AND_FILTER is that the TRACK
must be of TRACK_CATEGORY SURFACE_PLATFORM.

(3) Creation Operations: ATOMIC_FILTERs are created through calls to
either: MAKE_DISTANCE_ATOMIC_FILTER, MAKE_TRACK_CATEGORY_
ATOMIC_FILTER, or MAKE_PLATFORM_IDENTITY_ATOMIC_FILTER.

47

Following the creation of an ATOMIC_FILTER, it is appended to its parent AND_FILTER
through a call to ADD_ATOMIC_FILTER_TO_AND_FILTER. Once an AND_FILTER
has been fully defined, it is appended to the FILTER through a call to
ADD_AND_FILTER_TO_FILTER.

(4) Update Operations: FILTERs are updated as a result of the addition of
AND_FILTERs. Once the FILTER is filled, the contents of that FILTER are unchangeable,
unless a new FILTER is created, thus deleting the old ATOMIC_FILTERs and
AND_FILTER:s.

¢. TRACK_DATABASE

(1) Description: TRACK_DATABASE represents the LCCDS database of
TRACKSs. The implementation of the TRACK_DATABASE type is given in Appendix Q,
p. 231.

(2) Attributes: ACTIVE_TRACK(TRACK_DATABASE) returns a boolean
value that tells whether or not a TRACK is active in the database. For example, following
a call to FIND_TRACK_IN_DBASE(TRACK_ID), the function
ACTIVE_TRACK(TRACK_DATABASE) will return FALSE if the TRACK was not
found. Active relates to a TRACK receiving periodic updates by the function
ADD_TRACK_OBSERVATION.

(3) Creation Operations: LCCDS contains one, and only one, object of type

TRACK_DATBASE that is created at system initialization.

(4) Update Operations: TRACK_DATABASE is updated when a TRACK
is added to the database (ADD_TRACK_TO_DBASE), when a TRACK is deleted from
the database (DROP_TRACK_FROM_DBASE), and when the entire database is deleted
(PURGE_ENTIRE_DBASE).

48

d. GLOBAL_POSITION

(1) Description: A GLOBAL_POSITION represents the earth coordinates
of a TRACK geographic location. The implementation of the GLOBAL_POSITION type
is given in Appendix N, p. 219. Internally we use a right-handed coordinate system
centered on the center of the earth. The z axis points to the north pole, and the x axis points

to the intersection of the equator and the Greenwich Meridian.

(2) Auttributes: The geographic location is defined as a latitude and longitude
of the TRACK. Latitude is defined as an angle from the equator (PHI) and Longitude is an
angle from the Greenwich Meridian (THETA). GET _LATITUDE(GLOBAL_POSITION)
and GET_LONGITUDE(GLOBAL_POSITION) are attributes of GLOBAL_POSITION
that refer to latitude and longitude, respectively. A GLOBAL_POSITION, as used in
LCCDS, cannot be changed once created. Its value can, however, be retrieved for use in the

computations of other values.

(3) Creation Operations: The operations that create a GLOBAL_POSITION
are MAKE_GLOBAL_POSITION and FIND_GLOBAL_POSITION.
MAKE_GLOBAL_POSITION accepts the numerical equivalents of degrees, minutes, and
seconds, as well as the latitude and longitude hemisphere ideatifiers and returns a
GLOBAL_POSITION in terms of PHI and THETA. FIND_GLOBAL_POSITION returns
a calculated GLOBAL_POSITION based on a RELATIVE_POSITION from another
GLOBAL_POSITION.

(4) Update Operations: None

e. LINK_TYPE

(1) Description: A LINK_TYPE represents a tactically significant contact as
reported over Link-11 (in M_SERIES_MSG format). The implementation of the
LINK_TYPE type is given in Appendix R, p. 238.

49

(2) Attributes: These elements refer to the LINK_TYPE’s Link number, its
relative position from DLRP (Data Link Reference Point), the time of the observation, the

TRACK category, the TRACK identity, and its altitude (if air).

A3) Creation Operations: A LINK_TYPE is created by
CONVERT_M_SERIES_MSG_TO_LINK_TYPE.

(4) Update Operations: Since the information used to fill an object of

LINK_TYPE comes into LCCDS from an external source, LINK_TYPE is not mutable.

J. ABSOLUTE_TIME

(1) Description: ABSOLUTE_TIME represents the year, month, and time of
day to the second. The implementation of the ABSOLUTE_TIME type is given in
Appendix K, p. 206.

(2) Auributes: YEAR(ABSOLUTE_TIME) refers to the calendar year.
MONTH(ABSOLUTE_TIME) refers to the numerical value of the calendar month.
DAY(ABSOLUTE_TIME) refers to the calendar day.
TIME_OF_DAY(ABSOLUTE_TIME) refers to the number of seconds elapsed in the

current day.

(3) Creation Operations: An object of type ABSOLUTE_TIME is created by
initiating a function call to MAKE_ABSOLUTE_TIME. Objects of type
ABSOLUTE_TIME can also be created though function calls to “+”, ““-”, or NOW.

(4) Update Operations: None.

g. VECTOR.2

(1) Description: Describes a two-dimensional vector defined in terms of
floating point numbers, representing a TRACK’s course and speed or its bearing and range.

The implementation of the VECTOR_2 type is given in Appendix G, p. 186.

50

(2) Attributes: LENGTH(VECTOR_2) refers to speed or range.
DIRECTION(VECTOR _2) refers to course or bearing. X_COORDINATE(VECTOR_2)
refers to the X coordinate of the vector. Y_COORDINATE(VECTOR_2) refers to the Y

coordinate of the vector.

(3) Creation Operations: Operations that create instances of VECTOR_2 are
MAKE POLAR_VECTOR_2 and MAKE_CARTESIAN_VECTOR_2. Operations that
create instances of VECTOR_2 by mathematical manipulations are “+” (the addition of
two vectors), “-” (subtraction of one vector from another), DOT_PRODUCT, “*”

(multiplication of a vector by a scalar factor).

(4) Update Operations: None.

h. VECTOR_3

(1) Description: Describes a three-dimensional vector defined in terms of
floating point numbers. The implementation of the VECTOR_3 type is given in Appendix
H, p. 194.

(2) Attributes: Auributes of VECTOR_3 include LENGTH(VECTOR_3),
X_COORDINATE(VECTOR_3), Y_COORDINATE(VECTOR_3),
Z_COORDINATE(VECTOR_3), THETA(VECTOR_3), and PHI(VECTOR_3).

(3) Creation Operations: Operations that create instances of VECTOR_3 are
MAKE_POLAR_VECTOR_3, MAKE_CARTESIAN_VECTOR_3. Operations that
create instances of VECTOR_3 by mathematical manipulations are “+” (the addition of
two vectors), “-” (subtraction of one vector from another), DOT_PRODUCT,

CROSS_PRODUCT, SCALE (multiplication of a vector by a scalar factor)

(4) Update Operations: None.

51

3. TASKINTEGRATION_SYSTEM:

The purpose of the task is to manage the track database. The task receives data or

information from various sources and translate/parse this raw data input into integration

systemn formatted data that the user_interface can graphically display. The task defines

entry calls to the various tasks, functions, and procedures that create, delete, or otherwise
modify TRACKs and FILTERs. The INTEGRATION_SYSTEM task also provides a
timing function for the task PROCESS_LINK_TRACKS that retrieves and modifies Link
11 input. The INTEGRATION_SYSTEM task is necessary to. provide a Real_Time

environment for the integration system. The task allows parallel processing to take place

preventing one function or procedure from dominating the CPU.

A list of the entry calls defined by the task follows:

Entry CREATE_TRACK: Creates a TRACK and enters it into the
TRACK_DATABASE.

Entry DELETE_TRACK_AND_SEND_TO_HISTORY: Deletes a
TRACK from the active TRACK_DATABASE and sends it to history.

Entry ADD_TRACK_OBSERVATION: Adds an observation to an
existing TRACK, using relative position from OWNSHIP as the
observation location.

Entry SET_TRACK_IDENTITY: Sets/changes a TRACK’s IDENTITY.

Entry SET_AMPL_INFO: Sets/changes a TRACK’s
AMPLIFYING_INFO.

Entry SET_PLATFORM_CLASS: Sets/changes a TRACK’s CLASS.
Entry SET_VESSEL_NAME: Sets/changes a TRACK’s NAME.
Entry SET_ALTITUDE: Sets/changes a TRACK’s ALTITUDE.
Entry GET_CONTROL.: Gets a TRACK’s CONTROL.

Entry SET_CONTROL.: Sets/changes a TRACK’s CONTROL.

52

Entry CHANGE_TRACK_CATEGORY: Sets/changes a TRACK’s
IDENTITY.

Enty BUILD_WAYPOINT_SPECIAL_POINT: Builds a WAYPOINT
TRACK.

Entry BUILD_NAV_HAZARD_SPECIAL_POINT: Builds a
NAV_HAZARD TRACK.

Entry BUILD_GENERAL_SPECIAL_POINT: Builds a GENERAL
SPECIAL_POINT TRACK.

Entry BUILD_PATH: Builds a PATH TRACK.

Entry BUILD_ABSOLUTE_CIRCLE_REGION: Builds an ABSOLUTE
CIRCLE REGION TRACK.

Entry BUILD_RELATIVE_CIRCLE_REGION: Builds a RELATIVE
CIRCLE REGION TRACK, with the radius of the circle in yards and
position of circle center relative to reference track position.

Entry BUILD_ABSOLUTE_POLYGON_REGION: Builds an
ABSOLUTE POLYGON REGION TRACK.

Entry BUILD_RELATIVE_POLYGON_REGION: Builds a RELATIVE
POLYGON REGION TRACK.

Enty CHANGE_COURSE: Adds TRACK observation reflecting
TRACK’s course change.

Entry CHANGE_SPEED: Adds TRACK observation reflecting TRACK’s
speed change.

Entry CHANGE_GLOBAL_POSITION: Adds TRACK observation
reflecting TRACK’s position change.

Entry MAKE_DISTANCE_ATOMIC_FILTER: Makes an
ATOMIC_FILTER based on distance type attributes and adds it to the
current AND_FILTER.

53

» Enuy MAKE_TRACK_CATEGORY_ATOMIC_FILTER: Makes an
ATOMIC_FILTER based on TRACK category type attributes and adds it to
the current AND_FILTER.

* Entry MAKE_PLATFORM_IDENTITY_ATOMIC_FILTER: Makes an
ATOMIC_FILTER based on TRACK identity type attributes and adds it to
the current AND_FILTER.

* Enty ADD_AND_FILTER_TO_FILTER: Adds a filled AND_FILTER to *
the current FILTER.

. Entry CLEAR_FILTER: Clears the FILTER to make way for a new one.

» Enuy WRITE_FILTER: Writes a filled FILTER to an archive file for
historical purposes.

* Entry FILL_TACPLOT: Fills the tactical display structure with TRACKs
that pass FILTER requirements.

* Entry SET_SENSOR_STATUS: Flags the system as to whether or not to
accept input from a particular OWNSHIP sensor.

* Entry GET_SENSOR_STATUS: Gets the current input status from a
particular OWNSHIP sensor.

* Entry SHUTDOWN: Purges the TRACK_DATABASE, sending each
TRACK to an archive file. Also writes archived TRACK info and FILTER
info to text files. Aborts the GPS update task.

4. TASK GPS_UPDATE_TASK:

The purpose of the task is to interface to a Global Positioning System via the RS-
232 communication port. The task reads in a string of data that represents the geographic
position of the ship at the time the data was received, and store the Global Positioning ’
System data in a buffer. The task defines no entry calls but, invokes the procedure
Add_Track_Observation which accepts the geographic position reported by r.e Global

Positioning System as a new observation. Retrieves GPS data every four seconds and adds

54

a new OWNSHIP TRACK observation The task is a separate task because if it were a
procedure or function the system would not be released to perform any other operations.
No entry calls are defined from GPS_UPDATE_TASK.
5. TASKLINK_CYCLE:

The purpose of the task is to limit the rate of the Link input. The task has an
endless loop that clocks the time p=riod of four seconds between loops. Each loop the task
calls the procedure that reads in the Link buffer and processes the M_Series_Messages
into Link_Tracks and stores them in the database. The single entry call defined by the task
is listed below:

a. entry START_LINK_UPDATE;

Link 11 information request performed every 4 seconds

6. TASK PROCESS_LINK_TRACK:

The purpose of the task is to process the Link 11 M_Series_Messages into
Link_Track format. After processing the message buffer the task checks the database to see
if the track is active. If the track is found the process updates the track with a
Global_Observation. If the track is not found the Track is created and stored in the
database.

No entry calls are defined by PROCESS_LINK_TRACK.

B. DATABASE MODEL

Design and development of the database for the LCCDS is driven by four goals:

1. Performance: Does the structure of the database support fast access to the data? Can
the system(USER) retrieve and update relevant data within specified response time?
2. Integrity: To what extent does the database guarantee that correct data is stored and

is not accidentally corrupted?

55

3. Understandability: How coherent is the structure of the database to the user? After

a long period of time, will it still be understandable to the designers and others?

4. Extensibility: How easily can the database be extended to new applications without
disrupting the present or on-going system?

Keeping these goals in mind, we define the requirements/restrictions placed on the

database.

1. The object-oriented database is to be implemented in Ada.
2. The database is to be divided into two parts.

a. An active database in main memory.

b. A historical database in secondary memory.
3. Develop a Real_Time system.

a. Time meets the four second Real_Time requirement with respect to start time

and completion time of a specific transaction(Task,Procedure,Function).

b. The current design assumes a single processor system.

Design of the tactical database starts with identification of objects and classes. The
initial phase consist of analysis of the objects proposed in reference 35. The requirements
are not difficult since most objects are identified by references 34 and 35, but, careful
analysis of the objects and their class along with the methods are necessary before starting
to build the database. First we establish that the database has only one class the abstract data
type Track. Each object of this class has object variables specific to that object

Our objective is to use the object-oriented approach in the databade design. An object-
oriented distributed program system is modeled as a collection of task or procedures
containing transactions and data objects which synchronize their operations through

messages. To elaborate, when discussing Ada tasking and communication complexity for

56

distributed programs, the key property to be considered is that both consist of a number of
processes or task that execute asynchronously in parallel, but communicate and
synchronize by message passing.

While considering requirements complexity, looking at distributed programs which
realize concurrency by parallel execution of separate tasks and which constrain the
concurrency by introducing task communication. We came to the conclusion that program
complexity consist of two components:

1. A local complexity which reflects the complexity of the individual task.

2. Communication complexity which reflects the complexity of the interactions
among tasks.

A transactions accesses objects indirectly by communication of its desires to the
transaction manager, which then sends a message to the appropriate object manager.
Although transaction and object managers may maintain more than one transaction or
object, we assume, with confidence, that the transaction manager controls on transaction at
a time, and each object manager controls one object. The internal structure of a transaction
manager consist of two components, the transaction body, and the probe queue. When a
transaction request an object, the transaction manager sends a message to the object
manager with the request. The object manager either grants or denies the request depending
upon whether or not the transaction will create a conflict(deadlock) with some transactions
already holding the object. The internal structure of the object manager contains:

1. A LOCK_LIST which holds information about those transactions that currently

hold a lock on the object.

2. A REQUEST_LIST which lists those transactions currently having an outstanding

request on the object.

3. A COMPATIBILITY_TABLE which holds information on the compatibility of

operations on the object.

57

The compatibility table is used by the concurrency control algorithm. The algorithm
is based on the read/write lock model and may allow more than one holder since the object
can be shared among transactions requesting read only locks. Concurrency control is
insured because we have insisted that all transactions run to completion or they don’t start
running. We accomplish this by building a schedule of transactions to run. Because task run
in parallel, it is important to insure the completion of specific parts of the program or task
before allowing the remaining procedures or task to run. By insuring this scheduling holds,
the results are the same as if the program or task was running individually.

The database stores the track data which contains ali the amplifying information
needed to identify the contact. The Identification number is assigned by the integration
system at the time the track is stored in the database. Because the data structure is a linked
list the track ID numbers can range from one to infinity, with zero reserved for ownship. If
the track in local the system will assign the next number to the track, but if the track is a
link track the system must check if the track is active or not. If the track is active then the
system simply updates the track. However, if the track does not exist the system assigns a
system track number and add the numbers to a cross reference tables. The cross reference
table is used to keep track of what link track goes with what system track. After the table
entry is made the system then stores the track in the database. Each track stored in the
database has added to it a link listed which contain each of the global observations. Each
global observation contains the global position and time of observation for the specific
track. The most recent observation is added to the head of the list enabling the system to
retrieve the current position with better time efficiency.

As discussed in the previous chapter, GPS data is received and buffered once every
second. The integration system once every four seconds lock the buffer for writing in order
to prevent inadvertent changing of data while reading. The integration systems package

“pavigation handler” reads the GPS data, translate the data to system format as illustrated

58

in Figure 18 and stores the data as ownship location in the database track zero. Likewise,
the LMS 11r the intermediate link 11 processor sends a series of M_Series_Messages
through the decoder. The integration system receives the data which is buffered for reading
by the integration systems “link processor”. The integration system once every four
seconds lock the link buffer to prevent changing of data while reading is taking place. Then
read the data and store it in the database by the appropriate track number assigned.

Tracks are stored to secondary memory(History) only when the active track is deleted
from the active database. If the system crashes, the active tracks in the active database are
lost. However, these tracks can and must be recreated when the system is brought back on
line. The user may select any number of tracks from the historical database to review by
calling READ_TRACK_FROM_ARCHIVES and entering the track number/numbers
desired. The integration system retrieves from secondary memory each track desired and

stores a copy of it in an array then passes the array to the user for graphic display.

59

TRACK_NODE
Type : TRACK T Type : TRACK TP
r f rt
Track_type ar Track_type ar
e c
Trk_Obs_Ptr ; Trk_Obs_Ptr| |,

Y

Global_Obs

Trk_Obs_Ptr

i

Global_Obs

Trk_Obs_Ptr

'

Global_Obs

Trk_Obs_Ptr

Figure 18 : DATABASE STRUCTURE

Y

Global_Obs

Trk_Obs_Ptr

,

Global_Obs

Trk_Obs_Ptr

60

C. LINK 11 MODEL

It is important to note that most material related to and involving the link 11 system is
classified confidential or higher. This document however, is unclassified, therefore the
discussion of the link 11 system and the interface to it is limited to the unclassified portion.

The link 11 signal is transmitted via UHF/HF radio communications to the fleet. We
purpose to use an existing system LMS 11r to be an intermediate step between the LCCDS
integration system and the link 11 receiver on the platform of choice. The LMS 11ris a unit
already tested and in use. The General Specifications and Operational Specifications are,
according to our source, in the Department of Defense supply system [Ref. 40].

The Link 11 interface with the integration system consists of a link 11 handler
designed inside the integration system and communicating directly with the LMS 11r
system. The link handler is an Ada function which breaks a string of characters into the
individual parts of the track data type and stores the array of parts in a buffer waiting for
the integration system to lock the buffer and read out the data. The integration system then
unlocks the buffer and the link handler repeats the process.

Link 11 data consist of two parts: a Data_Link_Reference_Point(DLRP) and a string
of tracks reported by fleet assets with reference to the DLRP. The DLRP must be entered
manually in the system by the user. The link handler translates the DLRP into a
Global_Position and stores it as a regular track. The integration system assigns a special
non changing track number to the DLRP that is determined at the time DLRP is entered.
This track number will be determined by the system each time DLRP is entered. Utilizing
this special track number the system calculates the relative position of the DLRP relative
to ownship and the Global_Position of each track in the Link 11 database. The
User_Interface selects the reference track and invokes the integration system function

Relative_Position to compute the relative position of each Link 11 track to the reference

61

track. If the user does not select a reference track the system uses ownship as the default
reference track and computes the Relative_Position of each Link 11 track relative to
ownship.

The track is then stored in the database with a system assigned track number. In order
to keep track of which link track matches with which system track, a table is constructed in
the integration system. The table contains three elements, the link track number, the
corresponding system track number and a pointer to link them together. When an updated
set of tracks is received the system searches the table to see if the link track is an active
system track. If the link track is found to be an active system track the system updates the
Global_Observation of the corresponding system track. If the link track is not found, the
system calls create track, assign a track number to the corresponding link track, and stores
the track in the database as illustrated in Figure 19.

The integration system scans the link track table for time out every four seconds
covering every track in the database designated as link control. The user may at any time
take local control of a link track simply by changing the track control to local. A time out
event causes the system to drop the link track from the active database. This action is
necessary in situations where no updates on the specific track have been received in a pre-
assigned time period. By doing so the system removes all inactive link tracks from the
active database, freeing up space for new ones. The procedure has no control over local
designated tracks. The user must clean house for these user generated tracks or tracks the

user has changed from link to local control.

Crypto-Unit
KG-40

TRACK

N

Track_data

Track _

Observation

‘ Figure 19 : DATA STRUCTURE DIAGRAM(LINK 11)

63

V. EVALUATION OF SYSTEM PERFORMANCE

A. FUNCTIONAL

Initial testing of the integration system was conducted by first designing a test program
to evaluate each individual requirement [enclosure 1, Ref. 1]. The process of evaluating the
integration system included testing for correctness and timing of each procedure, function,
and task individually as illustrated in Figures 20 through 26. The test for each individual
component was conducted successfully.

The system test program was expanded to test the integration system collectively. To
accomplish this testing procedure the integration system was linked to the navigation
system for Global Position System data input. Manual tracks were entered as Link tracks
to simulate Link 11 input. Each feature of the requirements of enclosure one of Reference
1 was tested for correctness. Timing for a single iteration of the requirements feature was
recorded and is illustrated in the timing diagrams Figure: 20 through 26.

A list of the test and evaluation of the system follows:

1. Track testing phase: Testing of the Track package required the evaluation of each

procedural operation and capability specified by the requirement specification. The

list of these steps and their results are:

Allow the user to create a manually input track and store the track in the database: T}'le

user may enter a track by either entering the bearing and range to the track from a

reference track or by entering a Global_Position of the new track. Timing is well

within the Real_Time range and correctness is verified.

The integration system adds a new track to the database when the user manually inputs

a tﬁxck or when a track is received from the link processor is not found in the link to

system track number reference table located in the integration system. The integration

64

system will assign a system track number to the track and store the track in the
database. Timing is well within the Real_Time range and correctness is verified.

The user has the option to delete any track from the database simply by identifying the
track by the Track_Number, locate and retrieve the track from the database, and call
the function DELETE_TRACK. Deletion of a track removes the track from the active
database and stores the track and all of the global_observations to history in secondary
memory. Timing is well within the Real_Time range and correctness is verified.

The system receives from GPS ownship fix data. Translates the data string intc
integration system formatted track data and stores the track in the database as track
number zero. The system receives from GPS new fix data every second and stores the
data in a buffer. The integration system reads the buffer every four seconds and stores
the data in the database as the current Global_Observation for track zero. Timing is
well within the Real_Time range and correctness is verified.

The user can change the attributes of a track in the database but, cannot change a
Global_Observation. The user has the option to record or change the track category
and identity or enter any amplifying information about the track. The user can make a
manual course and speed change. The integration system will compute and record a
new course and speed based on each new Global_Observation received or the manual
course and speed entry from the user. When the track location is received as a
Global_Position the system will compute the bearing and range to the track from
ownship and record the data. Timing is well within the Real_Time range and
correctness is verified.

2. Velocity package testing phase: The system determines the velocity of a specified
track. Velocity is divided into course and speed of a track Timing is well within the

Real_Time range and correctness is verified.

65

3. Global position package testing phase: The system allows the user to manually input
a Global_Position or will automatically convert a Relative_Position to a
Global_Position and assign the global position to a specific track. The system assigns a
relative position to a specific track from any specified reference track or defaults to
ownship as the reference track. Given a Global_Position the system computes the
Relative_Position. Timing is well within the Real_Time range and correctness is
verified.

4. CPA testing phase: The system determines the closest point of approach between any
two specified tracks. The CPA results are true bearing, range, and time of CPA. Timing
is well within the Real_Time range and correctness is verified.

5. Filter testing phase: The system can designate a specified filter called an atomic filter
and with the mathematical expressions and/or combine a series of these atomic filters
into a specific system filter which filters tracks for display only those that meet the
specific restrictions placed on the system by the user. Timing is well within the
Real_Time range and correctness is verified.

Testing of the integration system takes on two faces. The first is that of a bug or problem

finding and removal process. The second is a timing test to see if the individual Functions

and/or Procedures meet the Real_Time timing constraints. The timing test is divided into two

parts, one to test the complete process run time and the second is testing ench iteration of the

process. Real Time is defined by NAVSEA as a four second period of time. Testing of the

integration system has revealed to date, a safe and comfortable time margin within this

Real_Time period in which the system may operate.

While observing the timing graphs in section B this chapter, keep in mind that the times

used were generated by the UNIX operating system and rounded off to fit the timing graphs.

In each timing case the function tested was the primary function and may include any number

66

of called functions and procedures. The time considered for each timing graph was the
composite time required to execute the primary function. Each iteration of a proceaare/

function was also timed.

B. TIMING CHARTS FOR REAL TIME CONSTRAINTS TESTING

Timing and evaluation of the functions and tasks of the integration system was
conducted to evaluate the Real_Time requirements for the LCCDS. Each entry in the
timing diagrams Figures 20) through 26 correspond to a specific requirement by the sponsor
[enclosure 1, Ref. 1]. Each individual entry in the timing diagrams has two timing
categories and was conducted as previously discussed. The Isolated Module category for
each entry represents the time required to execute the requirements feature of the
procedure, function, or task as a individual unit. The System Response category for each
entry represents the time required to execute the same feature by the integration system.
Each entry in the timing diagrams was evaluated against the Real_Time requirement of the
four second time period to refresh/fill the TACPLOT for graphic display of the tactical
situation.

The integration system is designed such that no single operation will dominate CPU
time. The tasks and functions that are executed on a timed cycle require a small amount of
the four second time period allowing time for the operations requested by the user. Utilizing
these procedures we have developed a set of timing charts that very closely represent the

actual CPU time required for the integration system.

67

4Sec —| REAL_TIME

3 Sec —

2 Sec -1

1 Sec —

1

N

System Response

Isolated Module

7

71

Create
Track

Add
Track_OBS

Set
Track_ID

Figure 20 : TIMING DIAGRAM 1

Deletc
Track

4Sec — REAL_TIME

3 Sec —

2 Sec —1

1Sec —

77777
1

System Response
Isolated Module

Y com m

.

Sct Ampl
Informauon

Figure 21 : TIMING DIAGRAM 2

Set Platform
Class

68

Set Vessel
Name

Find CPA

4 Z
g ZA System Response
REAL_TIME E:l Isolated Module
3 Sec .
28ec
1Sec
Set Set Chagfe Change
Altitude Special Point pe Course
Figure 22 : TIMING DIAGRAM 3
4 Sec — ”
o REAL TIME 77 System Response
A
- E: Isolated Module
3 Sec —
2Scc —
1 See —

True True Relative Relative
Coursc Speed Course Spead

Figure 23 : TIMING DIAGRAM 4

69

48 REAL TIME :
& -—1 - iz System Response
L1 1solated Module

3 Sec —

2 Sec —i

1 Sec — __,l
Global Global Relative Link 11
Position Observation Posirion Track

Figure 24 : TIMING DIAGRAM 5

4 Sec REAL TIME v
7 - 277777 Sysicm Responsc
: Isolated Module
3 Sec —
2 Sec —
1 Sec —
Ownship Path Region Waypoint
Position (PIM)

Figure 25 : TIMING DIAGRAM 6

70

4Sec ___| REAL_TIME 2 System Response
1 1solated Module

3 Sec
2 SeC —

1 Sec —

i [V

Alomic Make Filf Dclete
Filter Filier Tacplot Filter

Figure 26 : TIMING DIAGRAM 7

71

VI. CONCLUSIONS

A. RECOMMENDATIONS

The use of reusable software is an approach that saves time and money. It is a software
development technique that works. One of the most serious problems faced today in armed
forces acquisition of new systems is the length of time between initial requirements
analysis and delivery of a usable system. This generally means that the system delivered is
already out of date when it arrives. The LCCDS design, however, takes advantage of
rapidly improving commercial computer technology, hardware and software. Specifically,
we take advantage of reliable and inexpensive commercial workstation systems. Even more
significant is the fact that we can obtain these workstations now vice having to wait for
years while someone makes up their mind what the specification for the system should be.

During the period of our research we discovered an interesting fact: there are several
different projects being funded to do the same exact thing, to develop a Combat Direction
System that can be placed on non NTDS and NTDS ships to assist in the navigation and
daily formation steaming functions. A combined effort might produce a workable
prototype capable of accomplishing what NAVSEA has mandated. The continuation of the
LCCDS will see such a prototype in the fleet and soon after working models.

Considerable effort was expended searching for an existing software unit capable of
translating Link 11 data into a format the system could utilize. Our recommendation is to
include the LMS- 11r a Logicon product to accomplish this task. The LMS-11ris a unit that
is presently in the system and can be obtained with short lead time.

A study designed to research the possibility of incorporating parts of the ATP-1C into
the system capabilities would be money well spent. All the necessary elements with the
exceptions of the algorithms are built into the system. Adding the required procedures and

functions containing the algorithms for computing solutions to ATP-1C requirements and

incorporating them into the system calls would accomplish this requirement. To complete

the addition of the ATP-1C solution solver would require the classifying of the system.

B. EVOLUTION OF THE SYSTEM

In order to accommodate the evolutionary changes in the tactical environment
resulting from changes in tactics, weapons and sensors, the LCCDS has to be capable of
quick and inexpensive software upgrades. This operational flexibility is a paramount
requirement. The system must be programmable, to adapt to system failures and the ever
changing data structure used in the integration system to support the constant evolution of
the system support software. The need for flexibility clearly dictates the use of a general
purpose, stored program, commercial computer where parts and upgrades can be
accomplished with minimum cost in time and money.

It is necessary to convert the various forms of tactical data from analog to digital
representations so that all data in the system can be represented in the same formats. Analog
to digital conversion becomes an important hardware priority. The procurement and
installation of this hardware must be addressed in the continuation of this body of research.
A follow on study would be most appropriate but not necessary as we have completed the
initial leg work and have outlined the necessary additions in hardware and software. Speed
of conversion and accuracy are the prime objectives in this task. The conversion to digital
data representation must be done as close to the source as possible to maintain accuracy
throughout the system and resultant data calculations and applications.

Different types of these conversion units must be defined and specific decisions made
as to which unit will be used in each of the more specific applications. The on-line analog
to digital conversion must be used for vital data sources such as these selected sensors:

gyro, pit log and the platforms primary radars.

Automatic radar detection and tracking of targets is another area of research for future
projects. This thesis has not explored this vast and complex area. At present some ships of
the fleet have a basic manual, rate aided tracking capability for all installed radars.
However, on some ships when radar is overwhelmed with tracks, using the conventional
grease pencil method of tracking and plotting, the analysis and decision making functions
border on hopelessness. There is an obvious need for the auto tracking capability to be
installed on all ships of the fleet.

Each ship equipped with LCCDS would have a real time working advantage over ships
not equipped with NTDS or the LCCDS. No longer would the commander have to wait fc
critical data needed to make fast, accurate, life-threatening decisions need for safe ship-
handling. The commander would have more confidence in his decisions because of his

confidence in the accuracy of the LCCDS system.

74

In order to better understand the integration system this guide to the data types and the

APPENDIX A

GUIDE TO DATA TYPES

location where they can be found is provided:

VECTOR_2_PKG
ABSOLUTE_TIME_PKG
VECTOR_2_PKG
VECTOR_3_PKG
ABSOLUTE_TIME_PKG
VECTOR_2_PKG
VECTOR_3_PKG
ABSOLUTE_TIME_PKG
ABSOLUTE_TIME_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_DATABASE_PKG
FILTER_PKG
FILTER_PKG
TRACK_PKG
TRACK_DATABASE_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG

FILTER PKG
FILTER_PKG
FILTER_PKG
ANGLE_PKG
ANGLE_PKG
ANGLE_PKG
FILTER_PKG
FILTER_PKG
FILTER_PKG
FILTER PKG

function
function
function
function
function
function
function
function
type

type
function
function
type
function
procedure
procedure
procedure
procedure
subtype
function
function
package
type

type

type
subtype
function
furiction
type

type

type

type

W 7
Wy
wy

Wy

\\<\\
ABSOLUTE_TIME

ABSOLUTE_VERTEX_ARRAY

ABS_CIRCLE_CENTER
ABS_REGION_VERTICES
ABS_VERTEX_TYPE
ACTIVE_TRACK

ADD_AND_FILTER_TO_FILTER
ADD_ATOMIC_FILTER_TO_AND FILTER
ADD_TRACK_OBSERVATION

ADD_TRACK_TO_DBASE
AIR_TRACK_TYPE
ALTITUDE

AMPL_INFO

AMP_STR

AND_FILTER
AND_FILTER NODE
AND_FILTER_PTR
ANGLE

ARCSIN

ARCTAN
ATOMIC_FILTER
ATOMIC_FILTER NODE
ATOMIC_FILTER OUT
ATOMIC_FILTER PTR

75

ANGLE_PKG

RELATIVE_POSITION_PKG

TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
FILTER_PKG
TRACK_PKG
TRACK_PKG
ANGLE_PKG
VELOCITY_PKG
CPA_PKG
FILTER_PKG
TRACK_PKG
TRACK_PKG
VECTOR_3_PKG
TRACK_PKG
ABSOLUTE_TIME_ PKG
ANGLE_PKG
TRACK_PKG
VECTOR_2_PKG
DISTANCE_PKG
FILTER_PKG
DISTANCE_PKG
VECTOR_2_PKG
VECTOR_3_PKG
TRACK_DATABASE PKG

GLOBAL_POSITION_ PKG

FILTER_PKG
FILTER_PXG
NAVIGATION_PKG
FILTER_PKG

subtype
function
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
function
procedure
function
type
function
function
type
procedure
procedure
procedure
function
function
function
function
procedure
function
subtype
type
function
function
“unction
procedure
type
subtype
function
package
type

AZIMUTH
BEARING_TO
BUILD_ABSOLUTE_CIRCLE REGION
BUILD_ABSOLUTE_POLYGON REGION
BUILD_GENERAL_SPECIAL_ POINT
BUILD_NAV_HAZARD SPECIAL POIN
BUILD_PATH
BUILD_RELATIVE_CIRCLE_REGION
BUILD_RELATIVE_POLYGON REGION
BUILD_WAYPOINT_ SPECIAL_POINT
CHANGE_COURSE _
CHANGE_GLOBAL_POSITION
CHANGE_SPEED
CHANGE_TRACK_CATEGORY
CIRCLE_RADIUS

CLEAR_FILTER

CONTROL

CONTROL_TYPE

cos

COURSE

CPA_TYPE

CREATE_FILTER_FILE
CREATE_TRACK
CREATE_TRACK_FILES
CROSS_PRODUCT
CURRENT_POSITION

DAY

DEGREES_TO_RADIANS

DELETE_TRACK_AND_SEND_TO HISTORY

DIRECTION
DISTANCE
DISTANCE_ATTRIBUTE_ ID
DISTANCE_IN NAUTICAL MILES
DOT_PRODUCT
DOT_PRODUCT
DROP_TRACK_FROM_DBASE
EAST_WEST

EQUALITY RELATION ID
EVERYTHING

E_W_INOUT

FILTER

76

FILTER_PKG
FILTER_PKG

CPA_PKG
GLOBAL_POSITION_PKG
GLOBAL_POSITION_PKG
TRACK_DATABASE_PKG
FILTER_PKG
FILTER_PKG
TRACK_PKG
TRACK_DATABASE_PKG
NAVIGATION_PKG
GLOBAL_POSITION_PKG
GLOBAL_POSITION_PKG
SYSTEM_STATUS_PKG
GLOBAL_POSITION_PKG
TRACK_PKG
INTEGRATION_SYSTEM PKG
GLOBAL_POSITION_ PKG
GLOBAL_POSITION PKG
RELATIVE_TIME_PKG
TRACK_PKG
INTEGRATION SYSTEM_PKG
VECTOR 2_ G
VECTOR_3_F<G
INTEGRATION SYSTEM PKG
LINK_PKG

LINK_PKG

LINK_PKG
ABSOLUTE_TIME PKG
VECTOR_2_PKG
VECTOR_3_PKG
FILTER_PKG
TRACK_PKG
GLOBAL_POSITION PKG
DISTANCE_PKG
FILTER_PKG
VECTOR_2_PKG
VECTOR_3_PKG
RELATIVE_TIME_PKG
SPEED_PKG
FILTER_PKG

type
package
function
function
function
procedure
procedure
procedure
procedure
procedure
function
procedure
procedure
function
type

type

task
function
functicn
function
type

task
function
function
task

type

type

type
function
function
function
procedure
function
function
function
procedure
function
function
function
function

procedure

FILTER_CATEGORY
FILTER_INOUT

FIND_CPA

FIND_GLOBAL POSITION
FIND RELATIVE_POSITION
FIND_TRACK_IN DBASE
FREE_AND_FILTER
FREE_ATOMIC_FILTER
FREE_OBS

FREE_TRK
GET_GPS_UPDATE
GET_LATITUDE
GET_LONGITUDE
GET_STATUS
GLOBAL_POSITION
GLOB_OBS_ARRAY
GPS_UPDATE_TASK
GREAT_CIRCLE_BEARING
GREAT CIRCLE DISTANCE
HOURS

IDENTITY_ TYPE
INTEGRATION SYSTEM
LENGTH

LENGTH

LINK_CYCLE

LINK_PTR

LINK_TABLE

LINK_TYPE
MAKE_ABSOLUTE_TIME
MAKE_CARTESIAN_VECTOR_2
MAKE_CARTESIAN_VECTOR_3

MAKE DISTANCE_ATOMIC_FILTER

MAKE_GLOBAL OBSERVATION
MAKE_GLOBAL_POSITION

MAKE NAUTICAL_MILES DISTANCE
MAKE PLATFORM_IDENTITY_ ATOMIC_FILTER

MAKE POLAR_VECTOR_2
MAKE POLAR VECTOR_3
MAKE_RELATIVE_TIME
MAKE_SPEED

MAKE_TRACK_CATEGORY_ATOMIC_FILTER

77

VELOCITY_PKG
TRACK_PKG
RELATIVE_TIME_PKG
ABSOLUTE_TIME_PKG
TRACK_PKG
M_SERIES_MSG_PKG
M_SERIES_MSG_PKG
TRACK_PKG
VECTOR_2_PKG
VECTOR_3_PKG
GLOBAL_POSITION_PKG
ABSOLUTE_TIME_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
NAVIGATION PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
VECTOR_3_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
FILTER_PKG

PROCESS_LINK_TRACKS_PKG

TRACK_DATABASE_PKG
ANGLE_PKG

RELATIVE_POSITION_PKG

TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
FILTER_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG

function
subtype
function
function
function
type

type
subtype
function
function
type
function
subtype
subtype
subtype
package
function
subtype
type
function
function
procedure
procedure
procedure
procedure
procedure
function
function
function
type

type
function
subtype
type

type
function
function
function

function

RELATIVE OBSERVATION PKGtype

RELATIVE_POSITION_ PKG

subtype

MAKE_VELOCITY

MAN_IN WATER_TRACK_TYPE
MINUTES

MONTH

MOST_ RECENT_OBSERVATION
M_SERIES_MSG
M_SERIES_MSG_BUFFER
NON_DISPLAYABLE TRACK_ TYPE
NORMALIZE

NORMALIZE

NORTH_SOUTH

NOW

NUM_HISTORY_PTS
NUM_PATH_PTS
NUM_VERTICES

N_S_INOUT

PATH_POINTS
PATH_TRACK_TYPE
PATH_TYPE

PHI

PLATFORM_CLASS
PRINT_GLOBAL_POSITION
PRINT_OBSERVATION TIME
PRINT TIME_OUT is
PROCESS_MSG_BUFFER
PURGE_ENTIRE_DBASE
RADIANS_TO_DEGREES
RANGE_OF

REGION_CATEG
REGION_CATEGORY

REGION PLACEMENT

REGION PLCMT

REGION TRACK_TYPE
REGION_TYPE

RELATION_ID
RELATIVE_BEARING
RELATIVE_CIRCLE_REFERENCE_TRK_NUM
RELATIVE_CIRCLE_REFERENCE _TRK_POS
RELATIVE_COURSE
RELATIVE_OBSERVATION
RELATIVE_POSITION

78

TRACK_PKG
TRACK_PKG
TRACK_PKG
RELATIVE TIME_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_DATABASE_PKG
VECTOR_2_PKG
VECTOR_3_PKG
RELATIVE_TIME_PKG
SYSTEM_STATUS_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
SYSTEM_STATUS_PKG
TRACK_PKG
TRACK_PKG
ANGLE_PKG
VELOCITY_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
SPEED_PKG
SPEED_PKG
VECTOR_2_PKG
VECTOR_3_PKG
SYSTEM_STATUS_PKG
TRACK_PKG
TRACK_PKG
SYSTEM_STATUS_PKG
TRACK_PKG
INTEGRATION SYSTEM PKG
FILTER_PKG
FILTER_PKG
VECTOR_3_PKG
ABSOLUTE_TIME PKG
TRACK_PKG

function
function
function
subtype
type
function
function
type
procedure
function
function
function
type
procedure
procedure
procedure
procedure
procedure
procedure
procedure
function
function
type
subtype
type
function
subtype
function
function
function
type
subtype
subtype
type
function
package
function
function
function

function

type

RELATIVE _REGION_REFERENCE_TRK_NUM
RELATIVE REGION_REFERENCE_TRK_POS
RELATIVE_SPEED

RELATIVE_ TIME
RELATIVE_VERTEX_ARRAY
REL_CIRCLE_CENTER
REL_REGION VERTICE
REL_VERTEX_TYPE
RESTORE_ALTERED_TRACK_TO_DATABASE
ROTATE

SCALE

SECONDS

SENSOR

SET_ALTITUDE
SET_AMPL_INFO
SET_CONTROL
SET_PLATFORM_CLASS
SET_STATUS
SET_TRACK_IDENTITY
SET_VESSEL_NAME

SIN

SPD
SPECIAL_ POINT CATEGORY
SPECIAL_POINT TRACK_TYPE
SPECIAL POINT TYPE
SPEC_POINT_CATEGORY
SPEED

SPEED_IN_KNOTS

SQRT

SQRT

STATUS
SUBSURFACE_TRACK_TYPE
SURFACE_TRACK_TYPE
SYSTEM_STATUS

TARGET RELATIVE VELOCITY
TC_INOUT
TEST_ATOMIC_FILTER
TEST_FILTER

THETA

TIME_OF DAY

TRACK

79

TRACK_PKG
TRACK_DATABASE_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_DATABASE_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_DATABASE_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG

type

type
package
procedure
function
function
type

type
package
type

type

type
function
function
function
function
function
type
procedure

TRACK_CATEGORY
TRACK_DATABASE
TRACK_DATA OUT
TRACK_HISTORY
TRACK_IDENTITY
TRACK_ID NUMBER
TRACK_NODE
TRACK_OBS
TRACK_OBS_OUT
TRACK_OBS_PTR
TRACK_PTR
TRACK_TYPE
TRK_CATEGORY
TRUE_BEARING
TRUE_COURSE
TRUE_SPEED
TRUE_VELOCITY
T_0BS

UPDATE_RELATIVE_CIRCLE_REFERENCE TRK_POS

TRACK PKG

procedure

UPDATE_RELATIVE REGION REFERENCE TRK_POS

VECTOR_2_PKG
VECTOR_3_PKG
VELOCITY_PKG
TRACK_PKG

INTEGRATION_SYSTEM PKG

TRACK_PKG
TRACK_PKG
TRACK_PKG
TRACK_PKG
FILTER_PKG
FILTER_PKG
TRACK_PKG
VECTOR_2_PKG
VECTOR_3_PKG
ABSOLUTE_TIME_PKG
VECTOR_2_PKG
VECTOR_3 PKG
VECTOR_3_PKG

type

type
subtype
function
package
package
function
type

type
procedure
procedure
procedure
function
function
function
function
function

function

VECTCR_2

VECTOR_3

VELOCITY

VESSEL NAME

VPKG

V_AND_C_STR

WAYPNT

WAYPOINT ARRAY

WAYPOINT TYPE

WRITE FILTER

WRITE FILTER ARCHIVES TO TEXT FILE
WRITE TRACK_ARCHIVES TO TEXT FILE
X_COORDINATE

X_COORDINATE

YEAR

Y COORDINATE

Y COORDINATE

Z_COORDINATE

80

APPENDIX B

INTEGRATION SYSTEM

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines tasks INTEGRATION_SYSTEM, GPS_UPDATE_TASK,
LINK_CYCLE

-- and associated entries

with TRACK PKG, GLOBAL_POSITION_PKG, GLOBAL_OBSERVATION_PKG, ANGLE_PKG,

SPEED_PKG, DISTANCE_PKG, RELATIVE POSITION PKG, FILTER PKG,
TACPLOT_PKG,

SYSTEM_STATUS_PKG, ABSOLUTE_TIME PKG:

use TRACK_PKG, GLOBAL_POSITION_PKG, GLOBAL_ OBSERVATION_PKG, ANGLE_PKG,

SPEED_PKG, DISTANCE PKG, RELATIVE_POSITION_ PKG, FILTER_PKG,
TACPLOT_PKG,

SYSTEM_STATUS_PKG, ABSCLUTE_TIME_PKG;
package INTEGRATION_SYSTEM PKG is
-- Contains entries that deal with procedures to alter the main
-- TRACK DATABASE, the FILTER, or the SYSTEM STATUS
task INTEGRATION_SYSTEM is
-- Creates a TRACK and enters it into the TRACK_DATABASE

entry CREATE_TRACK
(CBS : in GLOBAL_OBSERVATION:

81

TRK_CAT : in TRACK_CATEGORY):

-- Deletes a TRACK from the TRACK_DATABASE and sends it to history
entry DELETE_TRACK_AND SEND TO HISTORY
(TRK_NUM : in NATURAL);

-- Adds an observation to an existing TRACK
entry ADD_TRACK_OBSERVATION

(TRK_NUM : in NATURAL;

OBS : in GLOBAL OBSERVATION);

-- Adds an observation to an existing TRACK, using relative position
from

-- OWNSHIP as the observation location
entry ADD_TRACK_OBSERVATION

(TRK_NUM : in NATURAL:

POS : in RELATIVE POCSITION);

-- Sets/changes TRACK’s IDENTITY
entry SET_TRACK_IDENTITY

(TRK_NUM : in NATURAL;

TID : in IDENTITY_TYPE);

-- Sets/changes TRACK’s AMPLIFYING INFO
entry SET_AMPL_INFO

{ TRK_NUM : in NATURAL;

AMP : in STRING):

-- Sets/changes TRACK’s CLASS
entry SET_PLATFORM_CLASS

{ TRK_NUM : in NATURAL;

PC : in STRING);

~- Sets/changes TRACK's NAME
entry SET_VESSEL NAME

{ TRK_NUM : in NATURAL;

VES : in STRING);

-- Sets/changes TRACK’s ALTITUDE
entry SET_ALTITUDE
{ TRK_NUM : in NATURAL:

ALT : in DISTANCE);

-~ Gets TRACK’s CONTROL
entry GET_CONTROL

(TRK_NUM : in NATURAL;
CON : out CONTROL_TYPE);

-~ Sets/changes TRACK’s CONTROL
entry SET_CONTROL

(TRK_NUM : in NATURAL;

CON : in CONTROL TYPE)

-~ Sets/changes TRACK’s IDENTITY
entry CHANGE_TRACK_CATEGORY

(TRK_NUM : in NATURAL;

CAT : in TRACK_CATEGGRY);

-~ Builds a WAYPOINT TRACK

entry BUILD WAYPOINT SPECIAL_POINT

{ POS : in GLOBAL_POSITION;

TYME : in ABSOLUTE TIME); -- time to waypoint

-- Bu.lds a NAV_HAZARD TRACK
entry BUILD_NAV HAZARD SPECIAL POINT
(OBS : in GLOBAL_OBSERVATION)

-- Builds a GENERAL SPECIAL_POINT TRACK
entry BUILD GENERAL_SPECIAL_POINT
(OBS : in GLOBAL_OBSERVATION);

-- Builds a PATH TRACK
entry BUILD PATH
{ PTS : in WAYPOINT ARRAY); -- points in path

-- Builds an ABSOLUTE CIRCLE REGION TRACK

entry BUILD ABSOLUTE_CIRCLE_REGION

(RAD : in DISTANCE; -- radius of circle(yds)

CTR : in GLOBAL POSITION); =~- posn of circle center

-- Builds a RELATIVE CIRCLE RE

GION TRACK
entry BUILD RELATIVE CIRCLE_REGI

(RAD : in DISTANCE; -~ radius of circle(yds)

CTR : in RELATIVE_POSITION; -- posn of circle center relative
-- to ref trk pos
REF_TRK_NUM : in NATURAL }); -- reference track number

-~ Builds an ABSOLUTE POLYGON REGION TRACK
entry BUILD ABSOLUTE POLYGON REGION
{ AVA : in ABSOLUTE_VERTEX_ARRAY); -- pts in polygon

-- Builds a RELATIVE POLYGON REGION TRACK
entry BUILD RELATIVE POLYGON REGION

(RVA : in RELATIVE_VERTEX ARRAY; -- pts in poly reltv to ref trk
-- position
REF_TRK_NUM : in NATURAL); -- reference track number

-~ Adds TRACK observation reflecting TRACK’'s course change
entry CHANGE COURSE

(TRK_NUM : in NATURAL;

CRS : in ANGLE):

-~ Adds TRACK observation reflecting TRACK’s speed change
entry CHANGE_SPEED

(TRK_NUM : in NATURAL;

SPD : in SPEED);

-~ Adds TRACK observation reflecting TRACK’s position change
entry CHANGE_GLOBAL_POSITION

(TRK_NUM : in NATURAL;

POS : in GLOBAL_POSITION);

-- Makes an ATOMIC_FILTER based on distance type attributes and adds it
-~ to the current AND_FILTER

entry MAKE DISTANCE ATOMIC_FILTER

(DAF_ATTRIB_ID : in DISTANCE_ATTRIBUTE_ID;

DAF_LIMIT : in DISTANCE;

DAF_REF_TRK_NUM : in NATURAL;

DAF_RELATION : in RELATION ID);

-- Makes an ATOMIC_FILTER based on TRACK category type attributes and
adds

-- it to the current AND_FILTER

84

entry MAKE_TRACK_CATEGORY_ATOMIC FILTER
(TCAF_DESIRED TRK_CAT : in TRACK_CATEGORY;
TCAF_EQ REL_ID : in EQUALITY RELATION ID);

-- Makes an ATOMIC FILTER based on TRACK identity type attributes and
adds

-- it to the current AND FILTER

entry MAKE PLATFORM IDENTITY ATOMIC FILTER
(PIAF_DESIRED PLAT_ID : in IDENTITY_TYPE;
PIAF_EQ_REL_ID : in EQUALITY RELATION_ID);

-- Adds a filled AND FILTER to the current FILTER
entry ADD_AND FILTER TO_FILTER;

-- Clears the FILTER to make way for a new one
entry CLEAR_FILTER;

~-- Writes a filled FILTER to an archive file for historical purposes
entry WRITE_FILTER;

-- Fills the tactical display structure with TRACKs that pass FILTER
~- requirements
entry FILL TACPLOT;

~- Flags the system as to whether or not to accept input from a
particular

~- OWNSHIP sensor

entry SET_SENSOR_STATUS

(SENSER : in SENSOR;
SENSER_STATUS : in STATUS);

-~ Gets the current input status from a particular OWNSHIP sensor
entry GET_SENSOR_STATUS

(SENSER : in SENSOR;

SENSER_STATUS : out STATUS);:

~- Purges the TRACK_DATABASE, sending each TRACK to an archive file.
-- Also writes archived TRACK info and FILTER info to text files.

-~ Aborts the GPS update task.

entry SHUTDOWN;

85

end INTEGRATION_ SYSTEM:

-~ Retrieves GPS data every 4 seconds and adds a new OWNSHIP TRACK
-- observation
task GPS_UPDATE_TASK;

-~ Performs timing function for LINK-11 updates

task LINK CYCLE is

entry START_LINK_UPDATE; !
end LINK_CYCLE;

end INTEGRATION_SYSTEM PKG:

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

with TRACK DATABASE_PKG, VECTOR_2_PKG, CALENDAR, NAVIGATION_ PKG;
use TRACK_DATABASE_PKG, VECTOR_2_PKG, CALENDAR, NAVIGATION PKG;
package body INTEGRATION_SYSTEM PKG is

package APKG renames TRACK_PKG.AMP_STR;

package VPKG renames TRACK_PKG.V_AND C_STR;

use APKG, VPKG;

package INTEGER_INOUT is new INTEGER_IO (INTEGER);

package TC_INOUT is new ENUMERATION_IO (TRACK_CATEGORY);

use TC_INOUT; °

TRACK_DB : TRACK_DATABASE;

DIST_AT_FILT : ATOMIC FILTER;

86

TRK_CAT_AT_FILT : ATOMIC_FILTER (TRACK_CATEGORY FILTER);
PLTFM_ID_AT_FILT : ATOMIC FILTER (PLATFORM_IDENTITY FILTER);
AND_FILTUR : AND_FILTER;

FILTUR : FILTER;

ACTIVE_TRACK : TRACK;

OTHER_TRACK : TRACK;

OWNSHIP : TRACK;

SYSTUM _STATUS : SYSTEM_ STATUS;

LAST TRK_NUM : NATURAL := 0;

VSl : VPKG.VSTRING:
VS2 : APKG.VSTRING;

OBS : GLOBAL OBSERVATION;
POS : GLOBAL POSITION;

TNUM : NATURAL;

PASSED_FILTER : BOOLEAN;

task body INTEGRATION_SYSTEM is

begin

loop

accept CREATE_TRACK
(OBS : in GLOBAL_OBSERVATION;
TRK_CAT : in TRACK_CATEGORY) do

-- Restore previous ACTIVE TRACK to TRACK_DATABASE before creating

- Nn2°W one

RESTCRE_ALTERED TRACK_TC_DATABASE (ACTIVE TRACK, TRACK DB);

87

CREATE_TRACK (OBS, LAST TRK_NUM, ACTIVE_TRACK);
-- Default is UNKNCWN, so don’t change if UNKNOWN
if TRK_CAT /= TRACK_PKG.UNKNOWN then
CHANGE_TRACK_CATEGORY (ACTIVE_TRACK, TRK_CAT);
end if;

ADD TRACK_TO DBASE (ACTIVE TRACK, TRACK DB);

-- Keep OWNSHIP up-to-date

if TRACK_ID_NUMBER (ACTIVE_TRACK) = 0 then
OWNSHIP := ACTIVE TRACK:

end if;

end;

or

accept DELETE_TRACK_AND_SEND_TO_HISTORY
(TRK_NUM : in NATURAL) do

FIND_TRACK IN DBASE (TRK_NUM, ACTIVE_TRACK, TRACK_DB);
DROP_TRACK_FROM DBASE (TRACK DB);

-- Set OWNSHIP as the ACTIVE_TRACK following a deletion
FIND TRACK IN DBASE (0, ACTIVE_TRACK, TRACK DB);

end;

accept ADD_TRACK_CBSERVATION
(TRK_NUM : in NATURAL;
OBS : in GLOBAL_CBSERVATION) do

FIND_TRACK IN_DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB);
ADD_ TRACK_OBSERVATION (ACTIVE_TRACK, OBS);

-- Keep OWNSHIP up-to-date

88

if TRACK_ID_NUMBER (ACTIVE_TRACK) = 0 then
OWNSHIP := ACTIVE_TRACK;

end if;

end;

accept ADD_TRACK_OBSERVATION
(TRK_NUM : in NATURAL;
POS : in RELATIVE POSITION) do

FIND TRACK_IN DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB);

-- Convert the RELATIVE_POSITION observation to a GLOBAL OBSERVATION
OBS := MAKE_GLOBAL_OBSERVATION (OWNSHIP, ACTIVE_ TRACK, POS);

ADD _TRACK_OBSERVATION (ACTIVE_TRACK, OBS):;

end;

accept SET_TRACK IDENTITY
(TRK_NUM : in NATURAL;
TID : in IDENTITY TYPE) do

FIND TRACK_IN DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB);
SET_TRACK_IDENTITY (ACTIVE_TRACK, TID);

end;

accept SET_AMPL_INFO
{ TRK_NUM : in NATURAL;
AMP : in STRING) do

FIND_TRACK_IN DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB);

89

-- Convert STRING to a VSTRING (variable STRING)
VS§2 := VSTR (AMP):;

SET_AMPL_INFO (ACTIVE_TRACK, VS2);

end;

accept SET_PLATFORM_CLASS
(TRK_NUM : in NATURAL:
PC : in STRING) do

FIND TRACK_IN DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB):

-~ Convert STRING to a VSTRING (variable STRING)
VSl := VSTR (PC):

SET_PLATFORM_CLASS (ACTIVE_TRACK, VSl);

end:;

accept SET_VESSEL NAME
{ TRK_NUM : in NATURAL;
VES : in STRING) do

FIND_TRACK_IN_DBASE / TRK_NUM, ACTIVE_ TRACK, TRACK DB);

-~ Convert STRING to a VSTRING (variable STRING)
VSl := VSTR (VES):

SET_VESSEL_NAME (ACTIVE_TRACK, VSl);
end;

or

90

accept SET_ALTITUDE
(TRK_NUM : in NATURAL;
ALT : in DISTANCE) do

FIND_TRACK_IN_DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB):
SET_ALTITUDE (ACTIVE_TRACK, ALT):

end;

accept GET_CONTROL
(TRK_NUM : in NATURAL;
CON : out CONTROL _TYPE) do

FIND_TRACK_IN DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB);
CON := CONTROL (ACTIVE TRACK);

end;

accept SET_CONTROL
(TRK_NUM : in NATURAL;
CON : in CONTROL_TYPE) do

FIND_TRACK_IN_DBASE (TRK_NUM, ACTIVE TRACK, TRACK_DB);
SET_CONTROL (FCTIVE TRACK, CON);

end;

.......................... CHANGE_TRACK _CATEGORY.........c..iunimnnnnnnnn
accept CHANGE_TRACK_CATEGORY

{ TRK_NUM : in NATURAL;

CAT : in TRACK_CATEGORY) do

91

FIND_TRACK_IN DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB);
CHANGE_TRACK_CATEGORY (ACTIVE_TRACK, CAT);

end;

accept BUILD_WAYPOINT SPECIAL_POINT
(POS : in GLOBAL_POSITION;
TYME : in ABSOLUTE_TIME) do

~- Restore previous ACTIVE TRACK to TRACK_DATABASE before creating
~-- new one
RESTORE_ALTERED_TRACK_TO_DATABASE (ACTIVE TRACK, TRACK_DB }:

OBS.POSITION := POS;
OBS.OBSERVATION TIME
OBS.COURSE_AND_SPEED

TYME;
MAKE_CARTESIAN_VECTOR 2 (0.0, 0.0);

CREATE_TRACK (CEC, LAST_TRK NUM, OTHER_TRACK);

-- Changes TRACK_CATEGORY to SPECIAL_POINT, WAYPOINT & fills
-- waypoint data
BUILD WAYPOINT_ SPECIAL_POINT (OTHER_TRACK, POS, TYME):

ACTIVE_TRACK := OTHER_TRACK;
ADD_TRACK_TO_DBASE (ACTIVE_TRACK, TRACK DB);

end;

accept BUILD_NAV_HAZARD_SPECIAL_POINT
(OBS : in GLOBAL_OBSERVATION) do

-- Restore previous ACTIVE_TRACK to TRACK_DATABASE before creating
-- new one
RESTORE_ALTERED_TRACK_TO DATABASE (ACTIVE_TRACK, TRACK_DB)

CREATE_TRACK (OBS, LAST_TRK_NUM, OTHER_TRACK):
-- Changes TRACK_CATEGORY to SPECIAL POINT, NAV_HAZARD & fills
-~ nav_hazard data

BUILD_NAV_HAZARD SPECIAL_POINT (OTHER TRACK);

ACTIVE_TRACK := OTHER_TRACK;
ADD_TRACK_TO_DBASE (ACTIVE_TRACK, TRACK DB);

end;

......................... BUILD_GENERAL SPECIAL POINT....................
accept BUILD_GENERAL SFECIAL POINT
(OBS : in GLOBAL_OBSERVATION) do

-- Restore previous ACTIVE_TRACK to TRACK_DATABASE before creating
-- new one
RESTORE_ALTERED_TRACK_TO_DATABASE (ACTIVE_TRACK, TRACK DB);

CREATE_TRACK (OBS, LAST_TRK_NUM, OTHER TRACK);

-~ Changes TRACK_CATEGORY to SPECIAL_POINT, GENERAL
BUILD_GENERAL SPECIAL_POINT (OTHER_TRACK):

ACTIVE_TRACK := OTHER_TRACK;
ADD_TRACK_TO_DBASE (ACTIVE TRACK, TRACK DB);

end;

accept BUILD_PATH
(PTS : in WAYPOINT_ARRAY) do

-- Restore previous ACTIVE_TRACK to TRACK DATABASE before creating

== new one
RESTORE_ALTERED_TRACK_TO_DATABASE (ACTIVE TRACK, TRACK DB);

93

-- Use lst path waypoint as last observation’s position
OBS.POSITION := PTS (0).POSITION;
OBS.OBSERVATION_ TIME NOW;
OBS.COURSE_AND_SPEED MAKE CARTESIAN VECTOR_2 (0.0, 0.0);

CREATE_TRACK (OBS, LAST_TRK NUM, OTHER TRACK);

-- Changes TRACK_CATEGORY to PATH & fills points
BUILD PATH (OTHER_TRACK, PTS);

ACTIVE_TRACK := OTHER TRACK;
ADD_TRACK_TO_DBASE (ACTIVE_TRACK, TRACK DB);

end;

....................... BUILL_ ABSOLUTE_CIRCLE REGION...........cvuuneen...
accept BUILD_ABSOLUTE CIRCLE_REGION

(RAD : in DISTANCE;

CTR : in GLOBAL_POSITION) do

-- Restore previous ACTIVE_TRACK to TRACK_DATABASE before cr._ating
-- new one
RESTORE_ALTERED_TRACK_TO DATABASE (ACTIVE TRACK, TRACK DB);

-- Use circle center position as last observation’s position
OBS.POSITION := CTR;
OBS.OBSERVATION_TIME
OBS.COURSE_AND_SPEED

]

NOW;
MAKE_CARTESIAN VECTOR 2 (0.0, 0.0):

it

CREATE_TRACK (OBS, LAST TRK_NUM, OTHER TRACK);
-- Changes TRACK_CATEGORY to REGION, CIRCLE, ABSOLUTE & fills
-~ circle data

BUILD_ABSCLUTE_CIRCLE_ REGION (OTHER_TRACK, RAD, CTR);

ACTIVE_TRACK := OTHER_TRACK;
ADD_TRACK_TO_DBASE (ACTIVE TRACK, TRACK DB):

end;

94

accept BUILD RELATIVE CIRCLE REGION
(RAD : in DISTANCE;

CTR : in RELATIVE POSITION;
REF_TRK_NUM : in NATURAL) do

~- Get region’s reference TRACK's position
FIND_TRACK_IN DBASE (REF_TRK_NUM, ACTIVE TRACK, TRACK_DB);
OBS := MOST_RECENT_OBSERVATION (ACTIVE_TRACK);

CREATE_TRACK (CBS, LAST_TRK NUM, OTHER TRACK)
~- Changes TRACK_CATEGORY to REGION, CIRCLE, RELATIVE & fills
~- circle data

BUILD RELATIVE CIRCLE REGION (OTHER_TRACK, RAD, CTR, REF_TRK NUM) ;

ACTIVE_TRACK := OTHER_TRACK;
ADD_TRACK_TO_DBASE (ACTIVE_TRACK, TRACK DB);

end;

accept BUILD ABSOLUTE_POLYGON_ REGION
(AVA : in ABSOLUTE_VERTEX_ARRAY) do

-- Restore previous ACTIVE TRACK to TRACK_DATABASE before creating
-- new one
RESTORE_ALTERED TRACK_TO DATABASE (ACTIVE_TRACK, TRACK DB);

-- Use 1lst polygon point as last observation’s position
OBS.POSITION := AVA (0):
OBS.OBSERVATION TIME := NOW;

OBS.COURSE_AND SPEED := MAKE CARTESIAN VECTOR 2 (0.0, 0.0);

CREATE_TRACK (OBS, LAST_TRK_NUM, OTHER_TRACK);

95

-~ Changes TRACK_CATEGORY to REGION, POLYGON, ABSCOLUIE & fills
-- vertex points
BUILD_ABSOLUTE_POLYGON_REGION (OTHER_TRACK, AVA);

ACTIVE_TRACK := OTHER_TRACK;
ADD_TRACK_TO_DBASE (ACTIVE_TRACK, TRACK DB);

end;

accept BUILD_RELATIVE_POLYGON_REGION
(RVA : in RELATIVE_VERTEX_ARRAY;
REF_TRK NUM : in NATURAL) do

-- Get region’s reference TRACK’s position
FIND_TRACK_IN_DBASE (REF_TRK NUM, ACTIVE TRACK, TRACK DB);
OBS := MOST_RECENT_OBSERVATION (ACTIVE TRACK);
CREATE_TRACK (OBS, LAST_TRK_NUM, OTHER_TRACK);
-- Changes TRACK_CATEGORY to REGION, POLYGON, RELATIVE & fills
-- vertex points

BUILD_RELATIVE POLYGON_REGION (OTHER_TRACK, RVA, REF_TRK NUM);

ACTIVE TRACK := OTHER TRACK;
ADD_TRACK_TO_DBASE (ACTIVE_TRACK, TRACK DB);

end;

accept CHANGE_COURSE
(TRK_NUM : in NATURAL;
CRS : in ANGLE) do

FIND_TRACK_IN_DBASE (TRK_NUM, ACTIVE_TRACK, TRACK DB);
CHANGE_COURSE (ACTIVE TRACK, CRS);

96

end;

accept CHANGE_SPEED
{ TRK_NUM : in NATURAL;
SPD : in SPEED) do

FIND_TRACK_IN DBASE (TRK_NUM, ACTIVE TRACK, TRACK DB);
CHANGE_SPEED (ACTIVE_TRACK, SPD):

end;

........................... CHANGE GLOBAL POSITION.........iiiviunenennans
accept CHANGE_GLOBAL POSITION

{ TRK_NUM : in NATURAL;

POS : in GLOBAL_POSITION) do

FIND_TRACK_IN_DBASE (TRK_NUM, ACTIVE TRACK, TRACK DB);
CHANGE_GLOBAL_POSITION (ACTIVE TRACK, POS);

end;

accept MAKE DISTANCE ATOMIC FILTER

(DAF_ATTRIB_ID : in DISTANCE ATTRIBUTE ID;
DAF_LIMIT : in DISTANCE;

DAF_REF_TRK_NUM : in NATURAL;

DAF_RELATION : in RELATION_ ID) do

-- Find reference TRACK in database
FIND_TRACK_IN DBASE (DAF_REF_TRK_NUM, ACTIVE_TRACK, TRACK DB);

MAKE_DISTANCE_ATOMIC_FILTER (DAF_ATTRIB_ID, DAF_LIMIT,
ACTIVE_TRACK, DAF_RELATION, DIST_AT_FILT);

ADD_ATOMIC_FILTER_TO_AND FILTER (DIST AT FILT, AND FILTUR);

97

accept MAKE_TRACK_CATEGORY_ ATOMIC_FILTER
(TCAF_DESIRED_TRK_CAT : in TRACK_CATEGORY;
TCAF_EQ REL_ID : in EQUALITY_RELATION ID) do

MAKE_TRACK_CATEGORY_ATOMIC_FILTER (TCAF_DESIRED TRK_CAT,
TCAF_EQ REL_ID, TRK_CAT_AT FILT);

ADD_ATOMIC_FILTER _TO_AND_FILTER (TRK_CAT_AT FILT, AND_FILTUR):;

end;

accept MAKE_PLATFORM IDENTITY_ ATOMIC_ FILTER
(PIAF_DESIRED_PLAT_ID : in IDENTITY TYPE;
PIAF_EQ REL_ID : in EQUALITY RELATION_ID) do

MAKE_PLATFORM_IDENTITY ATOMIC FILTER (PIAF DESIRED PLAT_ ID,
PIAF_EQ REL_ID, PLTFM_ID_AT FILT);

ADD_ATOMIC_FILTER TO_AND_FILTER (PLTFM_ID AT FILT, AND FILTUR):

end;

accept ADD AND FILTER TO_FILTER do
ADD_AND_FILTER _TO FILTER (AND_FILTUR, FILTUR):

end;

98

accept CLEAR_FILTER do

CLEAR_FILTER (FILTUR);

end;

accept WRITE FILTER do

WRITE _FILTER (FILTUR);

end;

accept FILL TACPLOT do

EMPTY TACPLOT;

-- For all TRACKS in the database
for I in 0 .. LAST TRK_NUM loop

FIND_TRACK_IN DBASE (I, ACTIVE_TRACK, TRACK DB);

-- If TRACK is found
if TRACK_DATABASE_PKG.ACTIVE_TRACK (TRACK DB) then

-- Things get tricky when the TRACK is a RELATIVE REGION.
-- We need to retrieve the reference TRACK’s position to
-- calculate the REGION’s current position

if TRK_CATEGORY (ACTIVE_TRACK) REGION then

if REGION_PLCMT (ACTIVE_TRACK) RELATIVE_TO TRACK then

-- Store the REGION’s track number
TNUM := TRACK_ID_NUMBER (ACTIVE_TRACK)

if REGION CATEG (ACTIVE_TRACK) = CIRCLE then

99

-- Find the reference’s position
FIND TRACK IN DBASE (RELATIVE_CIRCLE_REFERENCE_TRK_NUM
(ACTIVE TRACK), ACTIVE_TRACK, TRACK_DB);
CURRENT_POSITION (ACTIVE TRACK);
MOST_RECENT_OBSERVATION (ACTIVE_TRACK);

POS
OBS

-- Make the REGION the ACTIVE_TRACK again
FIND_TRACK_IN_DBASE (TNUM, ACTIVE_TRACK, TRACK DB };

—-- Update the REGION’s reference position
UPDATE_RELATIVE_ CIRCLE_REFERENCE_TRK_POS (ACTIVE_TRACK,
POS);
else —-- RELATIVE POLYGON

-- Find the reference’s position
FIND TRACK IN DBASE (RELATIVE_REGION_REFERENCE_TRK_NUM
(ACTIVE _TRACK), ACTIVE_TRACK, TRACK DB);
CURRENT_POSITION (ACTIVE TRACK);
MOST_RECENT_OBSERVATION (ACTIVE_TRACK);

POS
OBS

-- Make the REGION the ACTIVE_TRACK again
FIND_TRACK_IN DBASE (TNUM, ACTIVE_TRACK, TRACK DB);

-- Update the REGION'’s reference position
UPDATE_RELATIVE_REGION_REFERENCE_TRK_POS (ACTIVE_TRACK,
POS);
end if;

-— If the RELATIVE REGION’s course and speed don’t match
-- the reference’s, add an observation
if MOST_RECENT_OBSERVATION (ACTIVE_TRACK) /= OBS then
ADD_TRACK_OBSERVATION (ACTIVE_TRACK, OBS);
end if;
end if;

end if;

-- Test the TRACK against the FILTER
PASSED_FILTER := TEST FILTER (FILTUR, ACTIVE_TRACK);

100

-- If TRACK passes FILTER, add it to TACPLOT
if PASSED FILTER then
ADD TACPLOT_ELEMENT (ACTIVE_TRACK)i
end if;
end if;
end loop;
end;
or
accept SET_SENSOR_STATUS
(SENSER : in SENSOR;
SENSER_STATUS : in STATUS) do
SET STATUS (SYSTUM_STATUS, SENSER, SENSER_STATUS };
end;
or
accept GET_SENSOR_STATUS
{ SENSER : in SENSOR;
SENSER_STATUS : out STATUS) do
SENSER_STATUS := GET_STATUS (SYSTUM STATUS, SENSER);
end;
or
accept SHUTDOWN do
PURGE_ENTIRE DBASE (TRACK DB);
WRITE_TRACK_ARCHIVES_TO_ TEXT FILE;

WRITE_FILTER_ARCHIVES_TO_TEXT FILE;
abort GPS_UPDATE_ TASK;

101

end;
end select;
end loop;

end INTEGRATION_ SYSTEM;

task body GPS_UPDATE_TASK is
SECONDS : constant DURATION := 1.0;

-- Update required every 4 seconds
INTERVAL : constant DURATION := 4 * SECONDS;

NEXT_GPS_UPDATE : CALENDAR.TIME := CALENDAR.CLOCK + INTERVAL;
OBS : GLOBAL_OBSERVATION;

SENSER_STATUS : STATUS;

begin

loop

delay DURATION (NEXT GPS_UPDATE - CALENDAR.CLOCK);
INTEGRATION_SYSTEM.GET_ SENSOR STATUS (GPS, SENSER STATUS);

if SENSER_STATUS = UP then

-- Get OWNSHIP’s position from GPS
OBS := GET_GPS_UPDATE;

INTEGRATION_SYSTEM.ADD_TRACK_OBSERVATION (0, OBS);
end if;

NEXT_GPS_UPDATE := NEXT_GPS_UPDATE + INTERVAL;
end loop;

exception

102

when STATUS_ERROR | CONSTRAINT ERROR =>
SET_STATUS (SYSTUM STATUS, GPS, DOWN);

end GPS_UPDATE TASK;

task body LINK_CYCLE is

SECONDS : constant DURATION := 1.0;

-— Update required every 4 seconds

INTERVAL : constant DURATION := 4 * SECONDS;

NEXT LINK UPDATE : CALENDAR.TIME := CALENDAR.CLOCK + INTERVAL;
begin

loop

accept START_LINK UPDATE;
NEXT_LINK UPDATE := NEXT_ LINK UPLATE + INTERVAL;
delay DURATION (NEXT_ LINK_UPDATE - CALENDAR.CLOCK);

end loop;

end LINK CYCLE;

..

begin
null;
end INTEGRATION_SYSTEM_ PKG;

103

APPENDIX C

TRACK PACKAGE

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

-— Description : Defines abstract data type TRACK and associated
-- functions and procedures

with ANGLE_PKG, SPEED_PKG, DISTANCE PKG, VELOCITY PKG,
ABSOLUTE_TIME_ PKG,

GLOBAL_POSITION_PKG, GLOBAL OBSZRVATION PKG, VSTRINGS,
RELATIVE_POSITION_PKG, DIRECT_ IO;

use ANGLE PKG, SPEED_PKG, DISTANCE_PKG, VELOCITY_ PKG, ABSOLUTE TIME PKG,
GLOBAL_POSITION_PKG, GLOBAL_OBSERVATION_PKG, RELATIVE_POSITION PKG;

package TRACK PKG is

-—- Longest length of AMPL_INFO
AMP_LEN : constant INTEGER := 80;

-- Longest length of V_NAME & S_CLASS/A_CLASS
VES_AND_CLASS_LEN : constant INTEGER := 80;

-- Maximum allowable points in a path
MAX PTS_IN_PATH : constant NATURAL := 50;

104

-- Maximum number of history pcints of a TRACK to be displayed to the

user

MAX HISTORY PTS : constant NATURAL := 500;

~- Maximum allowable number of vertices in a polygon REGION TRACK

MAX_VERTICES IN POLYGON

subtype NUM PATH PTS is

constant NATURAL := 20;

NATURAL range 0 .. MAX PTS_IN_ PATH;

subtype NUM HISTORY PTS is

NATURAL range O .. MAX HISTORY PTS;

subtype NUM VERTICES is

NATURAL range 0 .. MAX VERTICES IN POLYGON;

-- TRACK history points
type GLOB_OBS_ARRAY is

array {(NUM_HISTORY PTS range <>) of GLOBAL OBSERVATION;

type WAYPOINT _TYPE is
record

POSITION : GLOBAL POSITION;-- Position of waypoint
TIME_TO : ABSOLUTE_TIME;-- Time tc¢ arrive at waypoint

end record;

type WAYPOINT ARRAY is
array (NUM PATH PTS range

type RELATIVE_VERTEX ARRAY
array (NUM_VERTICES range

type ABSOLUTE VERTEX ARRAY
array (NUM_VERTICES range

type TRACK is private;

type TRACK_CATEGORY is

<>) of WAYPOINT TYPE;

is
<>

is
<>

cf RELATIVE POSITION;

of GLOBAL POSITION;

(UNKNOWN, SURFACE_PLATFORM, SUBSURFACE_PLATFORM, AIR PLATFORM,
REGION, PATH, SPECIAL_POINT, MAN_ IN WATER, NON_DISPLAYABLE });

type IDENTITY TYPE is
(FRIENDLY, HOSTILE, NEUTRAL, UNKNOWN };

type CONTROL_TYPE is
(LINK, LOCAL);

type SPECIAL POINT_CATEGORY is
(GENERAL, WAYPOINT, NAV_HAZARD);

type REGION_CATEGORY is
(CIRCLE, POLYGON);

type REGION PLACEMENT is
(ABSOLUTE, RELATIVE_TO TRACK);

package AMP_STR is new VSTRINGS (AMP_LEN);

use AMP_STR;

package V_AND_C_STR is new VSTRINGS (VES AND CLASS LEN);
use V_AND _C_STR;

-- Creates a TRACK with its first observation
procedure CREATE TRACK

(GO : in GLOBAL_OBSERVATION;

LAST_TRACK_ID : in out NATURAL;

TRK : out TRACK);

-- Deletes TRACK and sends its TRACK_TYPE data, as well as its
-— GLOBAL OBSERVATIONs to secondary storage

procedure DELETE_TRACK_AND SEND TO HISTORY

(TRK : in out TRACK);

-- Creates TRK_FILE & OBS_FILE
procedure CREATE TRACK FILES;

-- Retrieves archived TRACK info from secondary storage. Reformats it
into

-- a human readable format and writes it to a secondary storage text
file.

procedure WRITE_TRACK_ARCHIVES_TO_TEXT FILE;

-- Adds an observation of a TRACK to an existing TRACK object

106

procedure ADD TRACK_OBSERVATION
(TRK : in out TRACK;
GO : in GLOBAL OBSERVATION);

—-- Changes/sets TRACK's IDENTITY TYPE
procedure SET_TRACK_IDENTITY

(TRK : in out TRACK;

TID : in IDENTITY TYPE);

-- Changes/sets TRACK's AMPLIFYING_ INFO
procedure SET_AMPL INFO

(TRK : out TRACK;

AMP : in AMP_ STR.VSTRING);

-- Changes/sets TRACK’s CLASS

procedure SET PLATFORM CLASS

(TRK : in out TRACK;

PC : in V_AND_C_STR.VSTRING);-- Class name

—-- Changes/sets TRACK’s VESSEL NAME
procedure SET VESSEL NAME

(TRK : in out TRACK;

VES : in V_AND C_STR.VSTRING };-- Vessel name

-- Changes/sets TRACK'’s ALTITUDE
procedure SET_ALTITUDE

(TRK : in out TRACK;

ALT : in DISTANCE);-- Altitude in yards

-- Changes/sets TRACK’s CONTROL TYPE
procedure SET_CONTROL

(TRK : out TRACK;

CON : in CONTROL_TYPE);-- LINK/LOCAL control

-- Changes TRACK’s TRACK_CATEGORY
procedure CHANGE_TRACK CATEGORY

(TRK1 : in out TRACK;

CAT : in TRACK_CATEGORY);

-- Builds a WAYPOINT
procedure BUILD~WAYPOINT_SPECIAL_POINT

107

(TRK : in out TRACK;
POS : in GLOBAL_ POSITION;
TYME : in ABSOLUTE TIME);~- Time to arrive at waypoint

-- Builds a NAV_HAZARD
procedure BUILD NAV_HAZARD SPECIAL_POINT
(TRK : in out TRACK);

-- Builds a GENERAL SPECIAL_POINT
procedure BUILD“GENERAL_SPECIAL_POINT
(TRK : in out TRACK);

-- Builds a PATH

procedure BUILD PATH

(TRK : in out TRACK;

PTS : in WAYPOINT_ARRAY);-- Points cn the path

-- Builds an ABSOLUTE CIRCLE REGION whose center is an absolute
-— GLOBAL_POSITION

procedure BUILD ABSOLUTE CIRCLE REGION

(TRK : in out TRACK;

RAD : in DISTANCE; -- Radius of circle

CTR : in GLOBAL POSITION);-- Center of circle

- Builds a CIRCLE REGION whose center is relative to a reference TRACK
procedure BUILD_RELATIVE CIRCLE REGION
(TRK : in out TRACK;

RAD : in DISTANCE;-- Radius of circle

CTR : in RELATIVE POSITION;-- Center of circle relative
-- to reference TRACK

REF : in NATURAL); -~ Reference track number

-- Builds an ABSOLUTE PCLYGON REGION whose vertices are absclute
-- GLOBAL_POSITIONs

procedure BUILD ABSOLUTE POLYGON REGION

{ TRK : in out TRACK;

AVA : in ABSOLUTE_VERTEX ARRAY);

—-- Builds a POLYGON REGION whose vertices are relative to a reference
TRACK

procedure BUILD_RELATIVE POLYGON REGION

108

{ TRK : 1n out TRACY;
RVA : in RELATIVE VERTEX_ ARRAY;
REF : in NATURAL); -- reference track numrer

-- Returns an array of the TRACK’s history points as reflected in the
-- TRACK_DATABASE

procedure TRACK HISTORY

(TRK : 1in TRACK;

HISTORY PTS_ARRAY : in ocut GLOB_OBS_ARRAY);

-- Changes the TRACK’s course and adds a new observation
~- Usually only invoked on OWNSHIP’s TRACK

procedure CHANGE COURSE

{ TRK : in out TRACK;

CRS : in ANGLE) ;

-- Changes the TRACK’s speed and adds a new observation
-- Usually only invoked on OWNSHIP’s TRACK

procedure CHANGE SPEED

(TRK : in out TRACK;

SPD : in SPEED);

-- Changes TRACK’s position without recomputing course and speed
-— Used as a correction measure

procedure CHANGE GLOBAL_ POSITION

(TRX : in out TRACK;

GP : in GLOBAL POSITION);

-- Returns TRACK number as generated by the system
function TRACK ID NUMBER
(TRX : TRACK) return NATURAL;

-- Returns TRACK’s IDENTITY TYPE
function TRACK_ IDENTITY

(TRK : TRACK) return IDENTITY TYPE;
-~ Returns TRACK’s AMPLIFYING INFO
function AMPL_INFO

(TRK : TRACK) return AMP STR.VSTRINSG;

-~ Returns TRACKX’s CLASS

109

function PLATFORM_CLASS
({ TRK : TRACK) return V_AND C_ STR.VSTRING;

-- Returns TRACK vessel’s name
function VESSEL_NAME
{ TRK : TRACK) return V_AND C STR.VSTRING;

~- Returns TRACK’s TRACK_CATEGORY
function TRK_CATEGORY -
(TRK : TRACK) return TRACK_CATEGORY;

-— Returns TRACK’s CONTROL_TYPE
function CONTROL
(TRK : TRACK) return CONTRCL_TYPE;

-~ Returns TRACK’s true course as reported/calculated in its
~- MOST_RECENT_OBSERVATION

function TRUE_COURSE

(TRK : TRACK) return ANGLE;

-- Returns TRACK’s true speed as reported/calculated in its
—-— MOST_RECENT_OBSERVATION

function TRUE_SPEED

(TRK : TRACK) return SPEED;

-- Returns TRACK’s true course and speed as reported/calculated in its
—-- MOST_RECENT_OBSERVATION

function TRUE_VELOCITY

(TRK : TRACK) return VELOCITY;

-- Returns target TRACK’s relative motion (course and speed) as seen
—-- from the reference TRACK

function TARGET_RELATIVE VELOCITY

(REFERENCE_TRACK,

TARGET_TRACK : TRACK) return VELOCITY;

-- Returns target TRACK’s relative course as seen from the reference
TRACK

function RELATIVE_COURSE
(REFERENCE_TRACK,
TARGET_TRACK : TRACK) return ANGLE;

110

-— Returns target TRAUK’s relative speed as seen from the reference
TRACK

function RELATIVE_ SPEED
(REFERENCE_TRACK,
TARGET_TRACK : TRACK) return SPEED;

-- Returns TRACK’s altitude in yards
function ALTITUDE
(TRK : TRACK) return DISTANCE;

-— Returns TRACK’s current DR (Dead Reckoning) position as calculated

-- from its MOST RECENT_OBSERVATION (last known position, course,
speed,

-- and time
function CURRENT_POSITION
(TRK : TRACK) return GLOBAL POSITION;

-—- Returns bearing to target TRACK from reference TRACK with respect to
-- reference TRACK’s heading (not true north)

function RELATIVE_BEARING

{ REFERENCE_TRACK,

TARGET TRACK : TRACK) return ANGLE;

-- Returns bearing to target TRACK from reference TRACK with respect to
true

-- north

function TRUE_BEARING

(REFERENCE_TRACK,

TARGET_TRACK : TRACK) return ANGLE;

-- Returns TRACK’s last entered GLOBAL_OBSERVATION
function MOST _RECENT_OBSERVATION
{ TRK : TRACK) return GLOBAL OBSERVATION;

-- Returns category of SPECIAL_POINT TRACK
function SPEC_POINT_CATEGORY
(TRK : TRACK) return SPECIAL POINT_CATEGORY;

—-- Retvrns a GLOBAL_OBSERVATION based on TRACK’s relative position to

-- reference TRACK. The TRACK’s course and speed are calculated based
~- on its new position and its MOST_RECENT_OBSERVATION

11]

function MAKE_GLOBAL_OBSERVATION

(OWNSHIP_TRACK : TRACK;

TARGET_TRACK : TRACK;

TGT_REL_POS : RELATIVE_POSITION) return GLOBAL_ OBSERVATION;

-- Returns category of REGION TRACK
function REGION_CATEG
({ TRK : TRACK) return REGION CATEGORY;

-- Returns method of REGION placement (ABSOLUTE, RELATIVE_TO TRACK)
function REGION_PLCMT
(TRK : TRACK) return REGION_PLACEMENT;

-- Returns radius of CIRCLE REGION in yards
function CIRCLE_RADIUS
(TRK : TRACK) return DISTANCE;

—-— Returns location of ABSOLUTE CIRCLE REGION center
function ABS_CIRCLE_CENTER
(TRK : TRACK) return GLOBAL_POSITION;

—-— Returns bearing and range from reference TRACK to RELATIVE CIRCLE
REGION

-- center
function REL_CIRCLE_ CENTER
(TRK : TRACK) return RELATIVE POSITION;

-- Returns all waypoints of a PATH
function PATH_POINTS
{(TRK : TRACK) return WAYPOINT ARRAY;

-- Return location of and time to waypoint
function WAYPNT
(TRK : TRACK) return WAYPOINT TYPE;

-—- Returns all vertices (bearings and ranges from reference TRACK) of
a

-~ RELATIVE POLYGON REGION
function REL_REGION VERTICES
(TRK : TRACK) return RELATIVE_VERTEX ARRAY;

112

-- Returns all vertices (earth coordinates) of an ABSOLUTE POLYGON
REGION

function ABS REGION_VERTICES
(TRK : TRACK) return ABSOLUTE_VERTEX ARRAY;

-— Returns reference TRACK number of a RELATIVE CIRCLE REGION
function RELATIVE_CIRCLE_REFERENCE_TRK_NUM
(TRK : TRACK) return NATURAL;

~- Returns the position of the reference TRACK of a RELATIVE CIRCLE
REGION

function RELATIVE CIRCLE_REFERENCE_TRK_ POS
(TRK : TRACK) return GLOBAL_POSITION;

-- Returns reference TRACK number of a RELATIVE POLYGON REGION
function RELATIVE_REGION_REFERENCE_TRK_NUM
(TRK : TRACK) return NATURAL;

—- Returns the position of the reference TRACK of a RELATIVE POLYGON
REGION

function RELATIVE_REGION_REFERENCE_TRK POS
(TRK : TRACK) return GLOBAL POSITION;

-- Updates position of RELATIVE CIRCLE REGION’s reference TRACK
procedure UPDATE_RELATIVE CIRCLE_REFERENCE TRK POS

(TRK : in out TRACK;

GP : in GLOBAL_POSITION);

-- Updates position of RELATIVE POLYGON REGION’s reference TRACK
procedure UPDATE_RELATIVE REGION_REFERENCE TRK POS

(TRK : in out TRACK;

GP . in GLOBAL_POSITION);

pragma INLINE (CREATE_TRACK, DELETE_TRACK_AND_SEND TO_ HISTORY,
CREATE_TRACK_FILES, WRITE_TRACK_ARCHIVES TO TEXT FILE,
ADD_TRACK_OBSERVATION, SET_TRACK IDENTITY, SET AMPL INFO,
SET_PLATFORM_CLASS, SET_VESSEL_NAME, SET ALTITUDE,
SET_CONTROL, CHANGE_TRACK_CATEGORY,
BUILD_WAYPOINT SPECIAL_POINT, BUILD NAV_HAZARD SPECIAL POINT,
BUILD_GENERAL_SPECIAL_POINT, BUILD PATH,
BUILD_ABSOLUTE_CIRCLE_REGION, BUILD RELATIVE_CIRCLE REGION,
BUILD_ABSOLUTE_POLYGON_REGION, BUILD RELATIVE POLYGON REGION,

113

TRACK_HISTORY, CHANGE_COURSE, CHANGE SPEED,
CHANGE_GLOBAL_POSITION, TRACK_ID_NUMBER, TRACK IDENTITY,
AMPL_INFO, PLATFORM_CLASS, VESSEL NAME, TRK_CATEGORY, CONTROL,
TRUE_COURSE, TRUE_SPEED, TRUE_VELOCITY,

TARGET RELATIVE_VELOCITY, RELATIVE_COURSE, RELATIVE SPEED,
ALTITUDE, CURRENT_POSITION, RELATIVE BEARING, TRUE_ BEARING,
MOST_RECENT OBSERVATION, SPEC_POINT CATEGORY,
MAKE_GLOBAL_OBSERVATION, REGION_CATEG, REGION PLCMT,
CIRCLE_RADIUS, ABS_CIRCLE_CENTER, REL_CIRCLE_CENTER,
PATH_POINTS, WAYPNT, REL_REGION_VERTICES, ABS_REGION VERTICES,
RELATIVE_CIRCLE_REFERENCE TRK_NUM,
RELATIVE_CIRCLE_REFERENCE_TRK_POS,

RELATIVE_REGION REFERENCE TRK_NUM,
RELATIVE_REGION_REFERENCE TRK POS,
UPDATE_RELATIVE_CIRCLE_REFERENCE TRK POS,
UPDATE_RELATIVE_REGION_REFERENCE_TRK POS);

private

type SPECIAL_POINT_TYPE

(S_P_CAT : SPECIAL_POINT_ CATEGORY := GENERAL) 1is
record

case S_P _CAT is

when WAYPOINT =>

WAYPT : WAYPOINT_TYPE;

when others =>

null;

end case;

end record;

type PATH_TYPE

(PTS : NUM_PATH PTS := 0) is
record

WAYPTS : WAYPOINT ARRAY (0 .. PTS);
end record;

type REL_VERTEX TYPE

{ PTS : NUM_VERTICES := 0) is

record

VERTICES : RELATIVE_VERTEX ARRAY (0 .. PTS);
end record;

114

type ABS_VERTEX_TYPE

(PTS : NUM_VERTICES := Q0) 1is

record

VERTICES : ABSOLUTE_VERTEX_ARRAY (O .. PTS);
end record;

type REGION_TYPE

{ REG_CAT : REGION_CATEGORY := CIRCLE;

REG_PLACEMT : REGION_PLACEMENT := ABSOLUTE) is

record

case REG_CAT is

when CIRCLE =>

RADIUS : DISTANCE;-- Circle radius

case REG_PLACEMT is

when ABSOLUTE =>

ABS_CENTER : GLOBAL POSITION;-- Circle center posit

when RELATIVE TO_TRACK =>

REL_CENTER : RELATIVE POSITION;-- Circle center posit
-— relative to ref trk

REFERENCE_TRACK1 : NATURAL; -- Ref track number
REF_TRK POSITIONl : GLOBAL POSITION;-- Ref track position
end case;

when POLYGON =>

case REG_PLACEMT is

when ABSOLUTE =>

ABS_VERTICES : ABS_VERTEX TYPE;-- Vertex positions

when RELATIVE_TO_ TRACK =>

REL_VERTICES : REL VERTEX TYPE;-- Vertex positions
-- relative to ref trk

REFERENCE_TRACKZ2 : NATURAL; -- Ref track number

REF_TRK_POSITIONZ : GLOBAL_POSITION;-- Ref track position

end case;

end case;

end record;

type TRACK TYPE

(CATEGORY : TRACK CATEGORY := UNKNOWN) is
record

TRACK_ID : NATURAL;-- Track number
AMPL_INFO : AMP_STR.VSTRING := AMP_STR.NUL;

115

CONTROL : CONTROL_TYPE := LOCAL;

case CATEGORY is

when SURFACE_PLATFORM | SUBSURFACE_PLATFORM =>
S_CLASS : V_AND_C_STR.VSTRING; -- Vessel class name
S_ID : IDENTITY TYPE := UNKNOWN;

V_NAME : V_AND_C_STR.VSTRING;-- Vessel’s name

when AIR PLATFORM =>

A_CLASS : V_AND_C_STR.VSTRING;-- Aircraft class name
A_ID : IDENTITY TYPE := UNKNOWN;

ALTITUDE : DISTANCE;

when SPECIAL_POINT =>

S_P_TYPE : SPECIAL_POINT_TYPE;

when PATH =>

P_TYPE : PATH_TYPE;

when REGION =>

R_TYPE : REGION_TYPE;

when others =>

null;

end case;

end record;

subtype SURFACE TRACK TYPE is TRACK_TYPE (SURFACE PLATFORM);
subtype SUBSURFACE TRACK_TYPE is TRACK_TYPE (SUBSURFACE_PLATFORM) ;
subtype AIR TRACK TYPE is TRACK TYPE (AIR PLATFORM);

subtype REGION_TRACK_TYPE is TRACK_TYPE (REGION);

subtype PATH_TRACK TYPE is TRACK TYPE (PATH);

subtype SPECIAL_POINT TRACK TYPE is TRACK TYPE (SPECIAL_POINT);
subtype MAN IN WATER TRACK TYPE is TRACK TYPE (MAN_IN WATER);
subtype NON DISPLAYABLE TRACK_TYPE is TRACK TYPE (NON_DISPLAYABLE);

-- Linked list structure that stores a TRACK’s GLOBAL_OBSERVATIONs
type TRACK_UBS;

type TRACK_OBS_PTR is access TRACK_OBS;

type TRACK OBS is

record

GLO_OBS : GLOBAL OBSERVATION;

NEXT_OBS : TRACK OBS PTR;

end record;

type TRACK is

116

record

TRACK _DATA : TRACK_TYPE;

TRK_OBS : TRACK_OBS PTR;-- Pointer to first
-- observation

end record;

—-— Structure used to write TRACK observations to DIRECT IO file
type T_OBS is

record

T_NUM : NATURAL; -- Track number

G_O : GLOBAL_OBSERVATION;

end record;

package TRACK_DATA_OUT is new DIRECT IO (TRACK _TYPE);
package TRACK_OBS_OUT is new DIRECT_IO (T OBS);

use TRACK DATA OUT, TRACK OBS_OUT;

end TRACK_PKG;

-- Authors : Richard T. Irwin
-— Willie K. Bolick

-- Date : 29 August 1991

with UNCHECKED_DEALLOCATION, RELATIVE_TIME PKG, VECTOR_2_PKG, DIRECT_ IO,
MATH, TEXT IO;

use RELATIVE_TIME_PKG, VECTOR_2_PKG, TEXT_ IO;

package body TRACK PKG is

procedure CREATE TRACK
{ GO : in GLOBAL OBSERVATION;

117

LAST_TRACK_ID : in out NATURAL; -- Track number (global var)
TRK : out TRACK) is

T O : TRACK OBS_PTR;
NEW_TRK : TRACK;

begin

NEW_TRK.TRACK DATA.TRACK_ID := LAST TRACK_ID;

T_O := new TRACK_OBS;

T_O0.GLO_OBS := GO;

NEW_TRK.TRK_OBS := T 0O;

LAST_TRACK_ID := LAST_TRACK_ID + 1;-- Increment for next TRACK
TRK := NEW_TRK;

end CREATE_TRACK;

....................... DELETE_TRACK_AND_SEND_TO_HISTORY.................
procedure DELETE TRACK AND SEND TO_HISTORY
(TRK : in out TRACK) 1is

procedure FREE OBS is
new UNCHECKED DEALLOCATION (TRACK_OBS, TRACK OBS PTR);

T1, T2 : TRACK OBS_PTR;
T DATA : TRACK_TYPE;

T O : T_OBS;

TRK_FILE : TRACK DATA OUT.FILE TYPE;-- File for TRACK DATA
OBS_FILE : TRACK OBS_OUT.FILE_TYPE;-- File for TRACK observations

T_INDEX : NATURAL;-- Index counter for TRK_FILE
O_INDEX : NATURAL;-- Index counter for OBS FILE

begin
-- Open DIRECT_IO archive files

TRACK_DATA_CUT.OPEN (TRK_FILE, INOUT FILE, “TRK_FILE”);
TRACK_OBS OUT.OPEN (OBS FILE, INOUT FILE, “OBS_FILE”);

118

-~ Get sizes of both files & set write indices to their sizes + 1
T _INDEX := NATURAL (TRACK_DATA_OUT.SIZE (TRK_FILE)) + 1;
O_INDEX := NATURAL (TRACK OBS OUT.SIZE (OBS FILE)) + 1;

T DATA := TRK.TRACK_DATA;

-- Write TRACK_DATA to file
TRACK_DATA_OUT.WRITE (TRK_FILE, T_DATA, TRACK DATA_ OUT.POSITIVE COUNT
(T_INDEX));

-- Get pointer to first TRACK observation
Tl := TRK.TRK_OBS;

-- Assiyn TRACK number to TRACK observation node about to be written so
-- it can later be retrieved & correlated to its TRACK DATA
T _O.T_NUM := T_DATA.TRACK_ID;

-— Write all TRACK observations to file, freeing allocated memory along
-- the way

while T1 /= null loop

T 0.G_0 := T1.GLO OBS;

TRACK_OBS_OUT.WRITE (OBS_FILE, T O, TRACK_OBS_OUT.POSITIVE_COUNT

{ O_INDEX));

O_INDEX := O_INDEX + 1;

T2 := T1.NEXT_OBS;
FREE_OBS (T1);
Tl := T2;

end loop;

TRACK_DATA_OUT.CLOSE (TRK_FILE);
TRACK_OBS_OUT.CLOSE (OBS_FILE };

end DELETE_TRACK_AND SEND TO_HISTORY;

.............................. CREATE_TRACK FILES........uiviunennnnnnnnn.
procedure CREATE_TRACK FILES is

TRK_FILE : TRACK_DATA_OUT.FILE_TYPE;
OBS_FILE : TRACK OBS_OUT.FILE_TYPE;

119

begin

TRACK_DATA OUT.CREATE (TRK_FILE, INOUT_FILE, “TRK_FILE”);
TRACK_OBS OUT.CREATE (OBS_FILE, INOUT_FILE, “OBS_FILE”);
TRACK_DATA_OUT.CLOSE (TRK_FILE);
TRACK_OBS_OUT.CLOSE (OBS_FILE);

end CREATE_TRACK_FILES;

....................... WRITE_TRACK_ARCHIVES_TO TEXT FILE................
procedure WRITE_TRACK ARCHIVES_ TO_TEXT FILE is

T _DATA : TRACK_TYPE;

T O : T_OBS;

TRK_NUM : NATURAL;-- Track number
FINISHED : BOOLEAN := FALSE;-- Flag to show when finished writing
T_CAT : TRACK_CATEGORY;

AMP_ INFO : AMP_STR.VSTRING;

CTL : CONTROL_TYPE;

CLASS : V_AND C_STR.VSTRING;

NAME : V_AND_C_STR.VSTRING;

IDENT : IDENTITY_TYPE;

SPEC_PT : SPECIAL_POINT CATEGORY;

GLO_POS : GLOBAL_POSITION;

REL_POS : RELATIVE_POSITION;

ABS_TIME : ABSOLUTE_TIME;

NAT NUM : NATURAL;

LAT DIR : NORTH_SOUTH;

LONG_DIR : EAST_WEST;

LAT_D,

LAT M,

LAT S : NATURAL;

LONG_D,

LONG_M,

LONG_S : NATURAL;

Y, M, D : NATURAL;

S : FLOAT;

REG_CAT : REGION_CATEGORY;

REG_PL : REGION_PLACEMENT;

DASHES : STRING (1 .. 80) := (OTHERS => ‘G

")

120

DOTS : STRING (1 80) := (OTHERS => ‘.’);
TRK _FILE : TRACK DATA OUT.FILE TYPE;

OBS_FILE : TRACK OBS_OUT.FILE TYPE;

TEXT FILE : TEXT IO.FILE TYPE;

++++++++++++HH+ b4+ 4444+ ++++4+PRINT_GLOBAL POSITION++++++++++++++++++++
-~ Prints TRACK observation points as earth coordinates to text file
procedure PRINT_GLOBAL POSITION is

begin

GET_LATITUDE (GLO_POS, LAT DIR, LAT D, LAT M, LAT S);

GET_LONGITUDE (GLO’POS, LONG_DIR, LONG_D, LONG_M, LONG_S);
PUT (TEXT_FILE, NATURAL’ IMAGE (LAT D));
PUT (TEXT_FILE, NATURAL’IMAGE (LAT M));
PUT (TEXT_FILE, NATURAL’IMAGE (LAT S));
if LAT DIR = N then

PUT (TEXT FILE, “ N “);

else

PUT (TEXT _FILE, “ S ™);

end if;

PUT (TEXT_FILE, NATURAL’IMAGE (LONG*D Y)
PUT (TEXT_FILE, NATURAL’ IMAGE (LONG_M)),
PUT (TEXT_FILE, NATURAL’IMAGE (LONG~S))
if LONG_DIR = W then

PUT (TEXT_FILE, ™ W” };

else

PUT (TEXT_FILE, ™ E”);

end if;

end PRINT_GLOBAL POSITION;

++ttetttttbbt bbbt dtt+4+4+44+44+PRINT OBSERVATION TIME++++++++++++++++++++
-- Prints time of TRACK observation as mm/dd/yy hh:mm:ss

121

procedure PRINT OBSERVATION TIME is

begin

it

nw U X
]

PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT

PUT
Y

PUT (
PUT (
(ABS

YEAR (ABS_TIME);

MONTH (ABS_TIME);

DAY (ABS_TIME);
TIME_OF_DAY (ABS_TIME);

TEXT_FILE,
TEXT FILE,
TEXT FILE,
TEXT FILE,
TEXT FILE,
TEXT FILE,
TEXT_FILE,
TEXT_FILE,
TEXT FILE,

TEXT_FILE,
TEXT FILE,
_TIME)))

NATURAL’ TMAGE

\\/II) ;
NATURAL’ IMAGE
\\/l') ;

NATURAL’ IMAGE
" W) ’.
NATURAL’ IMAGE
AR

NATURAL’ IMAGE

\N.7

)i
NATURAL’ IMAGE
))i

end PRINT_OBSERVATION_TIME;

(Y - 18060))

(HOURS (TIME OF DAY (ABS TIME))
(MINUTES

(TIME_OF_DAY (ABS_TIME)

(NATURAL (SECONDS (TIME OF DAY

)

)

)i

)

[—

begin -- WRITE_TRACK_ARCHIVES_TO_TEXT_FILE

-- Open DIRECT_ IO TRACK archive files

TRACK_DATA OUT.OPEN (TRK_FILE,

INOUT _FILE, “TRK_FILE”);

TRACK_OBS_OUT.OPEN (OBS_FILE, INOUT FILE, “OBS FILE”);

-~ Create text file for TRACK history

TEXT_I0O.CREATE

(TEXT_FILE, NAME => “TRACKS.HIS”);

while NOT TRACK_DATA QUT.END _OF FILE (TRK_FILE) loop
-- Read in all unique TRACK_DATA records one at a time

TRACK_DATA_OUT.READ (TRK_FILE, T DATA);

TRK_N

UM :=

T_DATA.TRACK_1ID;-- Get TRACK number to identify its

122

-- observations in OBS_FILE

-- Read in & write TRACK DATA info to text file

T_CAT := T_DATA.CATEGORY;

AMP_INFO := T_DATA.AMPL_INFO;
PUT_LINE (TEXT_FILE, DASHES);

PUT (TEXT_FILE, “TRACK NUMBER :");
*UT (TEXT_FILE, NATURAL’IMAGE (TRk_NUM)});
SET _COL (TEXT_FILE, 40);

PUT (TEXT_FILE, "“CONTROL : ™);

if T DATA.CONTROL = LINK then

PUT (TEXT_FILE, “LINK”);

else

PUT (TEXT_FILE, “LOCAL”);

end if;

TEXT_IO.NEW_LINE (TEXT_FILE);

PUT (TEXT_FILE,
PUT (TEXT_FILE,
TEXT_IO.NEW_LINE
PUT (TEXT FILE,

case T _CAT is

when UNKNOWN =>

“AMPLIFYING INFO : “);
AMP_STR.STR (AMP_INFO)
(TEXT FILE);

“TRACK CATEGORY : “

)i

)

PUT (TEXT FILE, “UNKNOWN”);
TEXT_IO.NEW_LINE (TEXT FILE);
PUT_LINE (TEXT FILE, DASHES);

when SURFACE_PLATFORM =>

CLASS := T DATA.S_CLASS;

NAME := T_DATA.V_NAME;

TDENT := T_DATA.S_ID;

PUT (TEXT_FILE, “SURFACE PLATFORM”);
TEXT_IO.NEW LINE (TEXT FILE);

PUT (TEXT FILE, “CLASS : “);

PUT (TEXT FILE,
TEXT_IO.NEW_LINE
PUT (TEXT FILE,

V_AND C_STR.STR (CLASS));
(TEXT FILE);

“IDENTITY : ™);

case IDENT is

when UNKNOWN =>

PUT (TEXT FILE, “UNKNOWN”);

when FRIENDLY =>

PUT (TEXT_FILE, “FRIENDLY”);

when HOSTILE =>
PUT (TEXT_FILE, “HOSTILE” });

when NEUTRAL => *
PUT (TEXT _FILE, “NEUTRAL”);

end case; -
TEXT_IO.NEW_LINE (TEXT FILE);

PUT (TEXT FILE, “VESSEL NAME : “);

PUT (TEXT FILE, V_AND C STR.STR (NAME));
TEXT_I0.NEW_LINE (TEXT FILE);

PUT_LINE (TEXT FILE, DASHES);

when SUBSURFACE PLATFORM =>

PUT (TEXT FILE,
CLASS :=

“SUBSURFACE PLATFORM”);

T DATA.S_CLASS;

NAME := T_DATA.V_NAME;
IDENT := T DATA.S_ID;

TEXT_IO.NEW_LINE (TEXT_FILE);

PUT (TEXT_FILE, “CLASS : “);

PUT (TEXT FILE, V_AND C_STR.STR (CLASS));
TEXT_IO.NEW_LINE (TEXT FILE);

PUT (TEXT FILE, “IDENTITY : “);

case IDENT is
when UNKNOWN =>
PUT (TEXT_FILE,

when FRIENDLY =>

“UNKNOWN”) ;

PUT (TEXT_FILE, “FRIENDLY”); v
when HOSTILE =>

PUT (TEXT_FILE, “HOSTILE”); S
when NEUTRAL =>

PUT (TEXT FILE, “NEUTRAL"”);

end case;

TEXT_I10.NEW_LINE (TEXT FILE);

124

PUT (TEXT FILE, “VESSEL NAME : “);
PUT (TEXT FILE, V_AND C_STR.STR (NAME)
TEXT_IO.NEW_LINE (TEXT_FILE);

PUT_LINE (TEXT FILE, DASHES);

)i

when AIR_PLATFORM =>

PUT (TEXT FILE, “AIR PLATFORM”);
CLASS := T _DATA.A_CLASS;
IDENT := T DATA.A_ID;

TEXT_IO.NEW_LINE
PUT (TEXT_FILE,
PUT (TEXT_FILE,
TEXT_IO.NEW_LINE
PUT (TEXT FILE,

case IDENT is
when UNKNOWN
PUT (TEXT_FILE,
when FRIENDLY
PUT (TEXT FILE,
when HOSTILE
PUT (TEXT_FILE,
when NEUTRAL =>
PUT (TEXT_FILE,
end case;

=>

=>

=>

TEXT I0.NEW_LINE
PUT_LINE

when REGION =>
REG_CAT :=
REG_PL :=
PUT (TEXT_FILE,

SET_COL (TEXT FILE,

case reg_cat is

when CIRCLE =>

PUT (TEXT FILE,

SET_COL (TEXT FILE,

(TEXT_FILE);

“CLASS : “);
V_AND_C_STR.STR (CLASS)
(TEXT_FILE);

“IDENTITY : “);

“UNKNOWN”) ;
“FRIENDLY”);
“HOSTILE"”

)i

“NEUTRAL”);

(TEXT_FILE);

(TEXT_FILE, DASHES);

T _DATA.R_TYPE.REG_CAT;
T_DATA.R_TYPE.REG_PLACEMT;

“REGION”) ;
35);

“CIRCLE”);
45);

125

)i

case REG_PL is

when ABSOLUTE =>
GLO_POS := T_DATA.R_TYPE.ABS_CENTER;
PUT (TEXT FILE, “ABSOLUTE”);
TEX1 10.NEW_LINE (TEXT_FILE);
PUT (TEXT_FILE,”CIRCLE CENTER :”);
PRINT GLOBAL_POSITION;

when RELATIVE_TO_TRACK =>
PUT (TEXT FILE, “RELATIVE TO TRACK”);
NAT NUM := T_DATA.R_TYPE.REFERENCE_TRACKI;
PUT (TEXT FILE,NATURAL’ IMAGE (NAT NUM));
TEXT IO.NEW_LINE (TEXT_FILE);
PUT_LINE (TEXT FILE, “BRG / RG FROM”);
PUT (TEXT FILE, “REFERENCE TRACK :”);
NAT NUM := NATURAL (RADIANS_TO DEGREES (BEARING_TO
(T_DATA.R TYPE.REL CENTER)));
PUT (TEXT FILE,NATURAL’ IMAGE (NAT_ NUM));
PUT (TEXT_FILE, ‘/’);
NAT_NUM := NATURAL (RANGE_OF (T_DATA.R_TYPE.REL_CENTER));
PUT (TEXT_FILE,NATURAL’IMAGE (NAT NUM));

end case;

TEXT_IO.NEW_LINE (TEXT FILE);

PUT (TEXT_FILE, “CIRCLE RADIUS :”);
NAT_NUM := NATURAL (T_DATA.R_TYPE.RADIUS);
PUT (TEXT FILE, NATURAL’IMAGE (NAT NUM));
TEXT_IO.NEW_LINE (TEXT FILE);

when POLYGON =>
PUT (TEXT FILE, “POLYGON”) ;
SET_COL (TEXT FILE, 45);

case REG_PL is
when ABSOLUTE =>
PUT (TEXT_FILE, “ABSOLUTE”);

TEXT IO.NEW LINE (TEXT_FILE);
PUT (TEXT FILE, “POLYGON VERTICES :");

126

TEXT_IO.NEW _LINE (TEXT FILE);
NAT NUM := NATURAL (T_DATA.R_TYPE.ABS_VERTICES.PTS);

for I in 0 .. NAT NUM loop

GLO_POS := T_DATA.R TYPE.ABS VERTICES.VERTICES (I);
PRINT_GLOBAL_POSITION;

TEXT_IO.NEW_LINE (TEXT_FILE);

end loop;

when RELATIVE_TO_ TRACK =>
PUT (TEXT FILE, “RELATIVE TO TRACK”);
NAT_NUM := T DATA.R_TYPE.REFERENCE TRACKI;
PUT (TEXT_FILE,NATURAL’IMAGE (NAT NUM));
TEXT_IO.NEW_LINE (TEXT_FILE);
PUT_LINE (TEXT_FILE, “POLYGON VERTICES”);
PUT (TEXT FILE, “(BRG/RG FM REF TRK) :”);
TEXT_IO.NEW_LINE (TEXT FILE);

NAT_NUM := NATURAL (T_DATA.R_TYPE.REL VERTICES.PTS
for I in 0 .. NAT_NUM loop

REL_POS := T_DATA.R_TYPE.REL VERTICES.VERTICES (I);
NAT_NUM := NATURAL (RADIANS_TO DEGREES (BEARING_TO

(REL_POS)));
PUT (TEXT FILE, NATURAL’IMAGE (NAT NUM));
PUT (TEXT_FILE, ‘/’);

NAT_NUM := NATURAL (RANGE_OF (REL_POS));
PUT (TEXT_FILE, NATURAL' IMAGE (NAT NUM));
TEXT IO.NEW_LINE (TEXT_FILE);
end loop;

end case;

end case;

PUT_LINE (TEXT FILE, DASHES);

when PATH =>
PUT (TEXT_FILE, “PATH”);
TEXT_IO.NEW_LINE (TEXT FILE);
NAT_NUM := T DATA.P_TYPE.PTS;

127

)i

for I in 0 .. NAT NUM loop

GLO_POS := T_DATA.P_TYPE.WAYPTS (I).POSITION;
ABS_TIME := T DATA.P_TYPE.WAYPTS (I).TIME TO;
PUT (TEXT_FILE, “PATH POINT POSITION :”);

PRINT_ GLOBAL POSITION;
TEXT IO.NEW_LINE (TEXT_FILE);

PUT (TEXT _FILE, “TIME TO PATH POINT :”);
PRINT_OBSERVATION_ TIME;
TEXT_IO.NEW_LINE (TEXT_FILE);
end loop;

PUT_LINE (TEXT_FILE, DASHES);

when SPECIAL_POINT =>
SPEC_PT := T _DATA.S_P_TYPE.S P_CAT;
PUT (TEXT_FILE, “SPECIAL POINT”);
SET_COL (TEXT_FILE, 40);

case SPEC_PT is

when GENERAL =>
PUT (TEXT_FILE, “GENERAL”);

when WAYPOINT =>
GLC_POS := T_DATA.S P TYPE.WAYPT.POSITION;
ABS TIME := T_DATA.S_P_IYPE.WAYPT.TIME_TO;
PUT (TEXT_FILE, “WAYPOINT”);
TEXT_IO.NEW_LINE (TEXT FILE);
PUT (TEXT _FILE, “WAYPOINT POSITION :”);
PRINT_GLOBAL_POSITION;
TEXT_IO.NEW_LINE (TEXT FILE);

PUT (TEXT_FILE, “TIME TO WAYPOINT :”);
PRINT_OBSERVATION_TIME;

when NAV HAZARD =>
PUT (TEXT_FILE, “NAV_HAZARD”);

end case;

TEXT_IO.NEW_LINE (TEXT FILE);
PUT_LINE (TEXT_FILE, DASHES);

128

when MAN IN_WATER =>
PUT (TEXT FILE, “MAN_IN_WATER”);
TEXT_IO.NEW_LINE (TEXT FILE);

PUT_LINE (TEXT_FILE, DASHES);

when NON_DISPLAYABLE =>
PUT (TEXT_FILE, “NON_DISPLAYABLE”);
TEXT_IO.NEW_LINE (TEXT FILE);

PUT_LINE (TEXT FILE, DASHES);

end case;

-- Since we know the TRACK number of the current TRACK being read/
written,

-- we can now identify its observations in OBS FILE by searching on its
~— TRACK number. Also, since a TRACK and its observations are dropped
—~- at the same time, the observations for any particular TRACK will be
-- contiguous in the file.

while NOT TRACK_OBS_OUT.END OF FILE (OBS_FILE) loop

exit when FINISHED;

TRACK_OBS_OUT.READ (OBS_FILE, T O);

if TRK_NUM = T_O.T_NUM then
—-- A match on TRACK number is found in the OBS FILE,

-— All observations will be together, so keep reading until a
mismatch

-- is found
while NOT FINISHED loop

-— Read in & write all TRACK’s observations

GLO_POS := T _0.G_O.POSITION;
ABS_TIME := T_0.G_O.OBSERVATION_TIME;

PUT (TEXT FILE, “OBSERVATION POSITION :”);
PRINT_GLOBAL_POSITION;

TEXT IO.NEW LINE (TEXT FILE);

PUT (TEXT FILE, “TIME OF OBSERVATION :”);

129

PRINT_OBSERVATION_TIME;
TEXT_IO.NEW_LINE (TEXT FILE);

PUT (TEXT FILE, “OBSERVED COURSE :”);
NAT_NUM := NATURAL (RADIANS_TO DEGREES (COURSE
(T_O.G_O.COURSE_AND SPEED)));

PUT (TEXT FILE, NATURAL’ IMAGE (NAT NUM));
TEXT_IO.NEW_LINE (TEXT_FILE);
PUT (TEXT_FILE, “OBSERVED SPEED :”);
NAT_NUM := NATURAL (SPEED_IN_KNOTS (SPD

(T_O.G_O.COURSE_AND_SPEED)));
PUT (TEXT_FILE, NATURAL’IMAGE (NAT NUM));
TEXT_IO.NEW_LINE (TEXT FILE);
PUT_LINE (TEXT_FILE, DOTS);

if NOT TRACK_OBS_OUT.END_OF FILE (OBS FILE) then

-- Get next TRACK observation
TRACK_OBS_OUT.READ (OBS_FILE, T O);

if TRK_NUM /= T _O.T_NUM then

-— Mismatch on TRACK number
FINISHED := TRUE;

-— Write next TRACK info on new page
TEXT_IO.NEW_PAGE (TEXT FILE);

end if;

else -- No more TRACK observations

FINISHED := TRUE;
TEXT_IO.NEW _PAGE (TEXT_FILE);

end if;

end loop;

end if;

end loop;

130

~- Go back to the start of OBS FILE to start reading observations for
—-— the next TRACK
TRACK_OBS_OUT.RESET (OBS_FILE);

-- Reset flag
FINISHED := FALSE;

end loop;
TRACK_DATA OUT.CLOSE (TRK_FILE);
TRACK_OBS_OUT.CLOSE (OBS_FILE);

TEXT_IC.CLOSE (TEXT_FILE);

end WRITE_TRACK_ARCHIVES_TO TEXT_ FILE;

procedure ADD_TRACK_OBSERVATION
(TRK : in out TRACK;
GO : in GLOBAL OBSERVATION) is

T_O : TRACK_OBS_PTR;
begin

-- Add observation to head of list
T O := new TRACK_OBS;

T _0.GLO_OBS := GO;

T_O.NEXT_OBS := TRK.TRK_OBS;

TRK.TRK_OBS := T_O;

end ADD_TRACK_OBSERVATION;

procedure SET TRACK_IDENTITY
{ TRK : in out TRACK;
TID : in IDENTITY_TYPE) is

begin

131

case TRK.TRACK_DATA.CATEGORY is
when SURFACE PLATFORM | SUBSURFACE_PLATFORM =>

TRK.TRACK_DATA.S ID := TID;
when AIR PLATFORM =>
TRK.TRACK _DATA.A ID := TID;

when others =>
null;

end case;

end SET_TRACK_IDENTITY;

procedure SET AMPL INFO

{ TRK : out TRACK;

AMP : in AMP_STR.VSTRING) is
begin

TRK.TRACK_DATA.AMPL_INFO := AMP;
end SET_AMPL_INFO;

procedure SET_PLATFORM_CLASS
(TRK : in out TRACK;
PC : in V_AND_C_STR.VSTRING) is

begin

case TRK.TRACK DATA.CATEGORY is
when SURFACE _PLATFORM | SUBSURFACE_PLATFORM =>

TRK.TRACK_DATA.S_CLASS := PC;
when AIR_PLATFORM =>

TRK.TRACK _DATA.A CLASS := PC;
when others =>

null;
end case;

end SET_PLATFORM_CLASS;

132

procedure SET_VESSEL NAME
(TRK : in out TRACK;
VES : in V_AND _C STR.VSTRING) is

begin

if (TRK.TRACK DATA.CATEGORY = SURFACE_PLATFORM) or

(TRK.TRACK DATA.CATEGORY = SUBSURFACE_PLATFORM) then
TRK.TRACK_DATA.V_NAME := VES;

end if;

end SET VESSEL NAME;

procedure SET_ALTITUDE
(TRK : in out TRACK;
ALT : in DISTANCE) is

begin

if TRK.TRACK DATA.CATEGORY = AIR PT..TFORM then
TRK.TRACK_DATA.ALTITUDE := ALT;
end if;

end SET_ALTITUDE;

procedure SET_CONTROL
(TRK : out TRACK;
CON : in CONTROL_TYPE) is

begin
TRK.TRACK_DATA.CONTROL := CON;
end SET_CONTROL;

.............................. CHANGE _TRACK_CATEGORY............ ...
procedure CHANGE_TRACK_CATEGORY

(TRK1 : in out TRACK;

CAT : in TRACK CATEGORY) is

133

TRK2 : TRACK;

SFC : SURFACE_TRACK_TYPE;

SUB : SUBSURFACE_TRACK TYPE;

AIR : AIR_TRACK_TYPE;
REG : REGION_TRACK_TYPE;

SPP : SPECIAL POINT TRACK_TYPE;

PTH : PATH_TRACK_TYPE;

MIW : MAN_IN WATER TRACK_

TYPE;

NON : NON_DISPLAYABLE TRACK TYPE;

begin

case CAT is

when SURFACE_PLATFORM =>
TRK2.TRACK_DATA := SFC;

when SUBSURFACE_ PLATFORM
TRK2.TRACK_DATA := SUB;

when AIR PLATFORM =>
TRK2.TRACK_DATA := AIR;

when REGION =>
TRK2.TRACK_DATA := REG;

when SPECIAL_POINT =>

TRKZ2 .TRACK_DATA := SPP;
when PATH =>
TRK2.TRACK_DATA = PTH;

when MAN_ IN WATER =>
TRK2.TRACK _DATA := MIW;
when NON DISPLAYABLE =>
TRKZ2.TRACK _DATA := NON;
when others =>
null;
end case;

TRK2.TRACK_DATA.TRACK_ID

TRK2.TRACK_DATA.AMPL_INFO

TRK2.TRACK DATA.CONTROL

TRK1 := TRK2;

:= TRK1.TRACK_DATA.TRACK_ID;
:= TRK1.TRACK DATA.AMPL INFO;

:= TRK1.TRACK DATA.CONTROL;
TRK2.TRK_OBS := TRK1.TRK_

OBS;

end CHANGE_TRACK_CATEGORY;

134

procedure BUILD WAYPOINT SPECIAL_POINT

(TRK : in out TRACK;

POS : in GLOBAL_POSITION;

TYME : in ABSOLUTE TIME) is

WP : SPECIAL_POINT_TYPE (WAYPOINT);

begin

CHANGE_TRACK CATEGORY (TRK, SPECIAL_POINT);
WP .WAYPT.POSITION := POS;

WP .WAYPT.TIME TO := TYME;

TRK.TRACK_DATA.S P_TYPE := WP;

end BUILD WAYPOINT SPECIAL POINT;

procedure BUILD NAV_HAZARD SPECIAL POINT
(TRK : in out TRACK) is

NH : SPECIAL POINT TYPE (NAV_HAZARD);

begin

CHANGE_TRACK CATEGORY (TRK, SPECIAL_POINT);
TRK.TRACK_DATA.S_P_TYPE := NH;

end BUILD_NAV_HAZARD_SPECIAL_POINT;

procedure BUILD_GENERAL SPECIAL_POINT
(TRK : in out TRACK) is

GEN : SPECIAL_POINT_TYPE;

begin

135

CHANGE_TRACK_CATEGORY (TRK, SPECIAL_POINT);
TRK.TRACK_DATA.S_P_TYPE := GEN;

end BUILD GENERAL_SPECIAL POINT;

procedure BUILD_PATH
(TRK : in out TRACK;
PTS : in WAYPOINT_ARRAY) is

N : NUM_PATH_PTS := PTS’LAST;
PTH : PATH_TYPE (N);

begin

CHANGE_TRACK_CATEGORY (TRK, PATH);
PTH.WAYPTS := PTS;
TRK.TRACK_DATA.P_TYPE := PTH;

end BUILD_ PATH;

procedure BUILD_ABSOLUTE_CIRCLE_REGION
(TRK : in out TRACK;

RAD : in DISTANCE;

CTR : in GLOBAL_POSITION) is

ABS_CIRCLE : REGION_TYPE;

begin

CHANGE_TRACK_CATEGORY (TRK, REGION);
ABS_CIRCLE.RADIUS := RAD;

ABS_CIRCLE.ABS_ CENTER
TRK.TRACK_DATA.R_TYPE

[l

CTR;
ABS_CIRCLE;

[}

end BUILD_ABSOLUTE_CIRCLE_REGION;

136

.......................... BUILD RELATIVE CIRCLE REGION
procedure BUILD RELATIVE_CIRCLE_ REGICN

(TRK : in out TRACK;

RAD : in DISTANCE;

CTR : in RELATIVE FOSITION;

REF : in NATURAL) is

REL_CIRCLE : REGION_TYPE (CIRCLE, RELATIVE TO TRACK

begin

CHANGE TRACK_CATEGORY (TRK, REGION);

REL CIRCLE.RADIUS := RAD;
REL_CIRCLE.REL_CENTER := CTR;

REL CIRCLE.REFERENCE_ TRACKl := REF;
TRK.TRACK_DATA.R_TYPE := REL_CIRCLE;

end BUILD_RELATIVE CIRCLE_REGION;

)i

.......................... BUILD_ABSOLUTE_POLYGON_REGION.................

procedure BUILD_ABSOLUTE_POLYGON REGION
(TRK : in out TRACK;
AVA : in ABSOLUTE VERTEX_ ARRAY) is

N : NUM_VERTICES := AVA’LAST;

AV_TYPE : ABS_VERTEX TYPE (N);

ABS_POLY : REGION_TYPE {(POLYGON, ABSOLUTE);
begin

CHANGE TRACK CATEGORY (TRK, REGION);
AV_TYPE.VERTICES := AVA;
ABS_POLY.ABS_VERTICES := AV_TYPE;

TRK.TRACK_DATA.R_TYPE := ABS POLY;

end BUILD ABSOLUTE_POLYGON REGION;

......................... BUILD_RELATIVE POLYGON REGION
procedure BUILD RELATIVE POLYGON REGION

137

(TRK :

in out TRACK;

RVA : in RELATIVE_VERTEX_ARRAY;
REF : in NATURAL) is

N : NUM VERTICES := RVA’LAST;

RV_TYPE

REL_POLY

begin

REL_VERTEX TYPE (N);
REGION TYPE (POLYGON, RELATIVE_TO_TRACK);

CHANGE_TRACK_CATEGORY (TRK, REGION);

RV_TYPE.

VERTICES := RVA;

REL POLY.REL_VERTICES := RV_TYPE;
REL_POLY.REFERENCE_TRACK2 := REF;
TRK.TRACK DATA.R TYPE := REL POLY;

end BUILD RELATIVE POLYGON_REGION;

procedure TRACK_HISTORY

(TRK

in TRACK;

HISTORY_PTS_ARRAY : in out GLOB_OBS_ARRAY) is

-— Points to first TRACK observation
NEXT_OBSERVATION_PTR : TRACK_OBS_PTR := TRK.TRK_OBS;

begin

-- Read

in as many observations as the user requested (as indicated by

-- the size of the array
for I in HISTORY_ PTS_ARRAY'RANGE loop

-- If there are less TRACK observations than the user reguested
if NEXT_OBSERVATION_PTR = null then

return;

end if;

-- Fill
HISTORY

array element with current observation
PTS _ARRAY (I) := NEXT OBSERVATION_PTR.GLO OBS;

138

-- Point to next observation
NEXT_OBSERVATION_PTR := NEXT OBSERVATION_PTR.NEXT_ OBS;

end loop;

end TRACK HISTORY;

procedure CHANGE COURSE
(TRK : in out TRACK;
CRS : in ANGLE) is

-- TRACK’s current speed
TRUE_SPD : SPEED := TRUE_SPEED (TRK);

-- TRACK’s current position
TRK_POS : GLOBAL_POSITION := CURRENT_PCSITION (TRK);

NEW_OBS : GLOBAL_OBSERVATION;
NEW_CRS_SPD : VELOCITY;

begin

NEW_CRS_SPD := MAKE_VELOCITY (TRUE_SPD, CRS);
NEW_OBS.OBSERVATION_TIME := NOW;
NEW_OBS.POSITION := TRK_POS;

NEW_OBS.COURSE_AND_SPEED := NEW_CRS_SPD;

-- Since we’re changing TRACK’s course, need to add a new observation
ADD_TRACK_OBSERVATION (TRK, NEW_OBS);

end CHANGE_COURSE;

procedure CHANGE SPEED
(TRK : in out TRACK;
SPD : in SPEED) is

-- TRACK’s current course
TRUE_CRS : ANGLE := TRUE_COURSE (TRK);

-—- TRACK’s current position
TRK_POS : GLOBAL_POSITION := CURRENT_POSITION (TRK });

NEW_OBS : GLOBAL_OBSERVATION;
NEW_CRS_SPD : VELOCITY;

begin

NEW_CRS_SPD := MAKE VELOCITY (SPD, TRUE_CRS);
NEW_OBS.OBSERVATION TIME := NOW;
NEW_OBS.POSITION := TRK_POS;

NEW_OBS.COURSE_AND SPEED := NEW_CRS_SPD;

-- Since we’'re changing TRACK’s speed, need to add a new observation
ADD_TRACK_OBSERVATION (TRK, NEW_OBS);

end CHANGE_ SPEED;

procedure CHANGE_GLOBAL_POSITION
(TRK : in out TRACK;
GP : in GLOBAL POSITION) is

-- TRACK's current course and speed
TRUE_VEL : VELOCITY := TRUE_VELOCITY (TRK);

NEW_OBS : GLOBAL_OBSERVATION;

begin
NEW_OBS.OBSERVATION_TIME := NOW;
NEW_OBS.COURSE_AND_SPEED := TRUE_VEL;

NEW_OBS.POSITION := GP;

-- Since we’re changing TRACK’s course and speed, need to add a new
-- observation

140

ADD TRACK_OBSERVATION (TRK, NEW_OBS);

end CHANGE GLOBAL POSITION;

function TRACK ID_NUMBER
(TRK : TRACK) return NATURAL is

begin
return TRK.TRACK_DATA.TRACK_ID;
end TRACK_ID_NUMBER;

function TRACK IDENTITY
(TRK : TRACK) return IDENTITY TYPE is

begin

case TRK.TRACK_DATA.CATEGORY is

when SURFACE_PLATFORM | SUBSURFACE_PLATFORM =>
return TRK.TRACK_DATA.S_ID;

when AIR PLATFORM =>

return TRK.TRACK_DATA.A 1ID;

when others =>

null;

end case;

end TRACK_IDENTITY;

function AMPL_INFO
(TRK : TRACK) return AMP_STR.VSTRING is

begin

return TRK.TRACK_DATA.AMPL_ INFO;
end AMPL_INFO;

141

function PLATFORM_CLASS
(TRK : TRACK) return V_AND_C_STR.VSTRING is

begin

case TRK.TRACK_DATA.CATEGORY is

when SURFACE_PLATFORM | SUBSURFACE_PLATFORM =>
return TRK.TRACK_DATA.S_CLASS;

when AIR_PLATFORM =>

return TRK.TRACK_DATA.A CLASS;

when others =>

null;

end case;

end PLATFORM CLASS;

function VESSEL_NAME
(TRK : TRACK) return V_AND C _STR.VSTRING is

begin

if (TRK.TRACK_DATA.CATEGORY = SURFACE PLATFORM) or

(TRK.TRACK_DATA.CATEGORY = SUBSURFACE PLATFORM) then
return TRK.TRACK DATA.V_NAME;

end if;

end VESSEL_NAME;

function TRK_CATEGORY
(TRK : TRACK) return TRACK_CATEGORY is

begin

return TRK.TRACK_DATA.CATEGORY;
end TRK_CATEGORY;

142

function CONTROL
({ TRK : TRACK) return CONTROL_TYPE is

begin
return TRK.TRACK DATA.CONTROL;
end CONTROL;

function TRUE_COURSE
(TRK : TRACK) return ANGLE is

begin
return COURSE (MOST_RECENT OBSERVATION (TRK) .COURSE_AND SPEED);
end TRUE_COURSE;

function TRUE_SPEED
{ TRK : TRACK) return SPEED is

begin
return SPD (MOST_RECENT_OBSERVATION (TRK) .COURSE AND SPEED);
end TRUE_SPEED;

function TRUE_VELOCITY
(TRK : TRACK) return VELOCITY 1is

begin
return MOST_RECENT_OBSERVATION (TRK) .COURSE_AND SPEED;
end TRUE_VELOCITY;

............................ TARGET_RELATIVE VELOCITY..........civenuenn.
function TARGET_RELATIVE_VELOCITY

(REFERENCE_TRACK,

TARGET TRACK : TRACK) return VELOCITY is

REF_TRUE_VELOCITY,
TGT_TRUE_VELOCITY : VELOCITY;

begin
-- Get target & reference TRACK’s true velocity

REF_TRUE_VELOCITY TRUE_VELOCITY (REFERENCE_ TRACK);
TGT_TRUE_VELOCITY TRUE_VELOCITY (TARGET_TRACK);

-- The difference in the 2 true velocity vectors gives relative velocity
return VECTOR_2_PKG.”-” (TGT_TRUE_VELOCITY, REF_TRUE_VELOCITY);

end TARGET_RELATIVE_VELOCITY;

function RELATIVE_COURSE
(REFERENCE TRACK,
TARGET_TRACK : TRACK) return ANGLE is

begin

return COURSE (TARGET_RELATIVE VELOCITY
(REFERENCE_TRACK, TARGET_TRACK));

end RELATIVE_COURSE;

function RELATIVE_ SPEED
(REFERENCE_TRACK,
TARGET_TRACK : TRACK) return SPEED is

begin

return SPD (TARGET_RELATIVE_VELOCITY (REFERENCE_TRACK, TARGET_TRACK)
)i

end RELATIVE_ SPEED;

function ALTITUDE
(TRK : TRACK) return DISTANCE is

begin

144

if TRK.TRACK_DATA.CATEGORY = AIR PLATFORM then
return TRK.TRACK DATA.ALTITUDE;
end if;

end ALTITUDE;

function CURRENT_POSITION
(TRK : TRACK) return GLOBAL POSITION is

TIME DIFFTRENCE : RELATIVE_TIME;
TRACK_SPEED : SPEED := TRUE_SPEED (TRK);
TRACK_COURSE : ANGLE := TRUE_COURSE (TRK);
DEAD_RECKONING DISTANCE : DISTANCE;

DEAD RECKONING_POSITION : RELATIVE POSITION;
LAST_GLOBAL_POSITION : GLOBAL POSITION;

begin

-- Get time difference between last TRACK observation and now in order
to

-- compute distance traveled

TIME_DIFFERENCE := NOW - MOST_RECENT OBSERVATION (TRK
) .OBSERVATION_ TIME;

-- Compute distance traveled based on last known speed and time
difference

DEAD_RECKONING_DISTANCE := TRACK_SPEED * TIME DIFFERENCE;

-- Make a PELATIVn 1JZ.1ICN vect~nr

DEAD_RECKONING_POSITION := RELATIVE_POSITION (MAKE POLAR VECTOR 2 (
FLOAT

(DEAD_RECKONING_DISTANCE), TRACK COURSE));

-- Get TRACK’s last known GLOBAL POSITION
LAST_GLOBAL_POSITION := MOST_RECENT_OBSERVATION (TRK) .POSITION;

-—- We can now find the TRACK’s current position based on last

-- GLOBAL_POSITION and the relative position from that point
return FIND GLOBAL_POSITION (DEAD_RECKONING POSITION,

145

LAST_GLOBAL_POSITION);

end CURRENT_POSITION;

function RELATIVE_BEARING
(REFERENCE_TRACK,
TARGET_TRACK : TRACK) return ANGLE is

REFERENCE_TRUE_COURSE : ANGLE := TRUE_COURSE (REFERENCE_TRACK);
REFERENCE_POSITION : GLOBAL_POSITION := CURRENT POSITION

(REFERENCE_TRACK) ;

TARGET_POSITION : GLOBAL_POSITION := CURRENT_POSITION

(TARGET TRACK);

BEARING_TO_TARGET : ANGLE;

REL_BEARING : ANGLE;

begin

-- Relative bearing to a target means we assume reference TRACK’Ss

-- heading to be 000.0 (no matter what course it is actually on).

-- The target TRACK’s relative bearing from the reference TRACK is a
-- function of the target TRACK’s true bearing from the reference TRACK
-- and the reference TRACK’s true course.

-~ Get true bearing to the target
BEARING_TO_TARGET := BEARING_TO (FIND_RELATIVE_ POSITION
(TARGET_ POSITION, REFERENCE POSITION));

-- Compute relative bearing

REL_BEARING := MATH.PI * 2.0 - REFERENCE_TRUE_COURSE +
BEARING_TO_TARGET;

~— Correct for angle > 360.0
if REL BEARING >= MATH.PI * 2.0 then
REL_BEARING := REL_BEARING - MATH.PI * 2.0;

end if;

return REL BEARING;

146

end RELATIVE BEARING;

function TRUE_BEARING
(REFERENCE_TRACK,
TARGET_TRACK : TRACK) return ANGLE is

REFERENCE_POSITION : GLOBAL_POSITION := CURRENT POSITION
(REFERENCE_TRACK) ;

TARGET POSITION : GLOBAL POSITION := CURRENT_POSITION

(TARGET TRACK);

begin

return BEARING_TO (FIND_RELATIVE_POSITION
(TARGET_POSITION, REFERENCE POSITION });

end TRUE_BEARING;

function MOST_RECENT_OBSERVATION
(TRK : TRACK) return GLOBAL_OBSERVATION is

begin
return TRK.TRK_OBS.GLO_OBS;
end MOST_RECENT_OBSERVATION;

function SPEC_POINT_ CATEGORY
(TRK : TRACK) return SPECIAL POINT CATEGORY is

begin
return TRK.TRACK_DATA.S P_TYPE.S P_CAT;
end SPEC_POINT_CATEGORY;

............................. MAKE_GLOBAL OBSERVATION....................
function MAKE_GLOBAL_OBSERVATION
(OWNSHIP TRACK : TRACK;

147

TARGET TRACK : TRACK;
TGT_REL_POS : RELATIVE POSITION) return GLOBAL_OBSERVATION is

GO : GLOBAL_OBSERVATION;

OP : GLOBAL POSITION := CURRENT POSITION (OWNSHIP_TRACK);

GP_1,

GP_2 : GLOBAL_POSITION;

TP : TRACK_OBS_PTR := TARGET TRACK.TRK_OBS;

CRS_1 : ANGLE; .
SPD_1 : SPEED;

RP_1 : RELATIVE_POSITION;
RT : RELATIVE_TIME;

begin
-— Get target TRACK'’s position based on reference TRACK’s position
-- and the target’s relative position from the reference

GP_1 := FIND_GLOBAL_POSITION (TGT REL_POS, OP);

GO.POSITION := GP_1;
GO.OBSERVATION TIME := NOW;

-- In order to compute course and speed, we need at least 1 previous
—-- observation with which to compare against its new observation

if TP = null then -~ No previous observations
GO.COURSE_AND SPEED := MAKE VELOCITY (0.0, 0.0);
else

GP_2 := TP.GLO_OBS.POSITION;

-~ Compute time difference between last observation and new one
RT := GO.OBSERVATION_ TIME - TP.GLO_OBS.OBSERVATION_ TIME;

-- Find the position difference between the 2 observations
RP_1 := FIND_RELATIVE POSITION (GP_1, GP_2);

-- Get the new course and speed
CRS_1 := BEARING TO (RP_1);

SPD_1 := RANGE OF (RP_1) / RT;

GO.COURSE_AND_SPEED := MAKE VELOCITY (SPD_1, CRS_1);

148

-

end if;

return GO;

end MAKE_GLOBAL_OBSERVATION;

function REGION_CATEG
(TRK : TRACK) return REGION_CATEGORY is

begin

if TRK_CATEGORY (TRK) = REGION then
return TRK.TRACK_DATA.R_TYPE.REG_CAT;
end if;

end REGION_CATEG;

function REGION_PLCMT
(TRK : TRACK) return REGION_PLACEMENT is

begin

if TRK_CATEGORY (TRK) = REGION then
return TRK.TRACKﬁDATA.R_TYPE.REG_PLACEMT;
end if;

end REGION_PLCMT;

function CIRCLE_RADIUS
(TRK : TRACK) return DISTANCE is

begin

if (TRK_CATEGORY (TRK) = REGION) and then
(TRK.TRACK_DATA.R_TYPE.REG_CAT = CIRCLE) then

149

return TRK.TRACK_DATA.R_TYPE.RADIUS;
end if;

end CIRCLE_RADIUS;

function ABS_CIRCLE_CENTER
(TRK : TRACK) return GLOBAL_POSITION is

begin

if (TRK_CATEGORY (TRK) = REGION) and then
(REGION CATEG (TRK) = CIRCLE) and then

(REGION_PLCMT (TRK) = ABSOLUTE) then
return TRK.TRACK_DATA.R_TYPE.ABS_ CENTER;

end if;

end ABS_CIRCLE_CENTER;

function REL_CIRCLE_CENTER
(TRK : TRACK) return RELATIVE_POSITION is

begin

if (TRK_CATEGORY (TRK) = REGION) and then

{ REGION_CATEG (TRK) CIRCLE) and then

{ REGION_PLCMT (TRK) RELATIVE_TO_TRACK) then
return TRK.TRACK_DATA.R_TYPE.REL_CENTER;

end if;

end REL_CIRCLE CENTER;

function PATH_POINTS
(TRK : TRACK) return WAYPOINT_ ARRAY is

begin

150

if TRK_CATEGORY (TRK) = PATH then
return TRK.TRACK_DATA.P_TYPE.WAYPTS;
end if;

end PATH POINTS;

function WAYPNT
(TRK : TRACK) return WAYPOINT TYPE is

begin

if (TRK_CATEGORY (TRK) = SPECIAL POINT) and then
(SPEC_POINT_CATEGORY (TRK) = WAYPOINT) then
return TRK.TRACK DATA.S_P_TYPE.WAYPT;

end if;

end WAYPNT;

function REL_REGION_VERTICES
(TRK : TRACK) return RELATIVE VERTEX_ ARRAY is

begin

if (TRK_CATEGORY (TRK) = REGION) and then

(REGION_CATEG (TRK) POLYGON) and then

(REGION_PLCMT (TRK) RELATIVE_TO_TRACK) then
return TRK.TRACK DATA.R_TYPE.REL VERTICES.VERTICES;
end if;

end REL_REGION VERTICES;

function ABS REGION VERTICES
(TRK : TRACK) return ABSOLUTE VERTEX ARRAY is

begin

if (TRK_CATEGORY (TRK) = REGION) and then

151

(REGION_CATEG (TRK) POLYGON } and then

(REGION_PLCMT (TRK) ABSOLUTE) then

return TRK.TRACK_DATA.R_TYPE.ABS VERTICES.VERTICES;
end if;

end ABS_REGION_VERTICES;

........................ RELATIVE CIRCLE_REFERENCE TRK NUM...............
function RELATIVE_CIRCLE_REFERENCE_TRK_NUM

(TRK : TRACK) return NATURAL is

begin

if (TRK_CATEGORY (TRK) = REGION) and then

{ REGION_CATEG (TRK) = CIRCLE) and then

(REGION_PLCMT (TRK) = RELATIVE TO TRACK) then
return TRK.TRACK_DATA.R_TYPE.REFERENCE_ TRACKI1;
end if;

end RELATIVE_CIRCLE_REFERENCE TRK NUM;

....................... RELATIVE_CIRCLE REFERENCE TRK POS................
function RELATIVE _CIRCLE REFERENCE_TRK_POS

(TRK : TRACK) return GLOBAL POSITION is

begin

if (TRK CATEGORY (TRK) = REGION) and then

(REGION CATEG (TRK) = CIRCLE) and then

(REGION _PLCMT (TRK) = RELATIVE_TO _TRACK) then
return TRK.TRACK_DATA.R_TYPE.REF TRK POSITION1;
end if;

end RELATIVE _CIRCLE_REFERENCE_TRK POS;

........................ RELATIVE_REGION REFERENCE TRK NUM...............
function RELATIVE REGION REFERENCE TRK_NUM

(TRK : TRACK) return NATURAL is

begin

if (TRK_CATEGORY (TRK) = REGION) and then
(REGION_CATEG (TRK) = POLYGON) and then
(REGION PLCMT (TRK) = RELATIVE_TO TRACK) then
return TRK.TRACK DATA.R_TYPE.REFERENCE TRACKZ;

[

It

end if;
end RELATIVE REGION_REFERENCE_TRK_NUM;

...................... RELATIVE REGION_REFERENCE_TRK POS.................
function RELATIVE REGION_REFERENCE_TRK_POS

(TRK : TRACK) return GLOBAL POSITION is

begin

if (TRK_CATEGORY (TRK) = REGICN) and then

(REGION_CATEG (TRK) = POLYGON) and then

(REGION_PLCMT (TRK) = RELATIVE TO_TRACK) then
return TRK.TRACK DATA.R _TYPE.REF TRK POSITIONZ;
end if;

end RELATIVE REGION REFERENCE TRK POS;

................... UPDATE_RELATIVE_CIRCLE_REFERENCE_TRK POS.............
procedure UPDATE_RELATIVE CIRCLE_REFERENCE_TRK_POS

(TRK : in out TRACK;
GP : in GLOBAL_POSITION) 1is

begin
TRK.TRACK_DATA.R_TYPE.REF_TRK_POSITIONl := GP;
end UPDATE_RELATIVE_ CIRCLE_REFERENCE_TRK POS;

................... UPDATE_RELATIVE REGION REFERENCE TRK POS.............
procedure UPDATE RELATIVE REGION_ REFERENCE TRK_POS

(TRK : in out TRACK;

. GP : in GLOBAL_POSITION) is
- begin
TRK.TRACK_DATA.R_TYPE.REF_TRK_POSITIONZ := GP;

end UPDATE_RELATIVE REGION REFERENCE_TRK POS;

end TRACK PKG;

APPENDIX D

FILTER PACKAGE

-- Authors : Richard T. Irwin
-— Willie K. Bolick

-- Date : 29 August 1991

..

-- Description : Defines abstract data type FILTER and assocciated
-- functions & procedures

with TRACK_PKG, DISTANCE_PKG, ABSOLUTE_TIME PKG, DIRECT_IO;
use TRACK PKG, DISTANCE PKG, ABSOLUTE_TIME PKG;
package FILTER PKG is

—-- An ATOMIC_FILTER is based on 1 of the 3 below attributes
type FILTER CATEGORY is

(DISTANCE_FILTER,

TRACK_CATEGORY_FILTER,

PLATFORM_IDENTITY FILTER);

-— An ATOMIC_FILTER based on DISTANCE FILTER is further based on the
-- attributes below

type DISTANCE ATTRIBUTE_ID is

(RANGE_FROM_REFERENCE_TRACK,

ALTITUDE); -- from ownship

type RELATION ID is

(EQUAL, NOT_EQUAL, LESS, LESS_OR EQUAL, GREATER, GREATER OR_EQUAL);

subtype EQUALITY_ RELATION ID is
RELATION_ID range EQUAL .. NOT_EQUAL;

-- Each AND FILTER is a set of ATOMIC FILTERs
type ATOMIC_FILTER
(FILTER_TYPE : FILTER CATEGORY := DISTANCE FILTER) is private;

-- a track passes an AND FILTER iff it passes every ATOMIC FILTER in
-- the list.
type AND FILTER is private;

-- a track passes a FILTER iff it passes at least one AND FILTER in
-- the list.
type FILTER is private;

—-- Makes an ATOMIC_FILTER based on DISTANCE attributes
procedure MAKE _DISTANCE_ATOMIC_FILTER

(DAF_ATTRIB_ID : in DISTANCE_ATTRIBUTE 1D;

DAF_LIMIT : in DISTANCE;

DAF_REF_TRACK : in TRACK;

DAF RELATION : in RELATION ID;

ATOMIC_FILTUR : out ATOMIC_FILTER);

-- Makes an ATOMIC_FILTER based on TRACK CATEGORY attributes
procedure MAKE TRACK_CATEGORY_ATOMIC FILTER

(TCAF_DESIRED_TRK_CAT : in TRACK_CATEGORY;

TCAF_EQ REL_ID : in EQUALITY RELATION ID;

ATOMIC_FILTUR : out ATOMIC FILTER);

-- Makes an ATOMIC_FILTER based on IDENTITY TYPE attributes
procedure MAXE_PLATFORM IDENTITY ATOMIC FILTER

(PIAF_DESIRED_PLAT_ID : in IDENTITY TYPE;

PIAF_EQ REL_ID : in EQUALITY_ RELATION ID;

ATOMIC_FILTUR : out ATOMIC FILTER);

-- Once the ATOMIC FILTER is built, it is added to the current
AND_FILTER

procedure ADD_ATOMIC FILTER_TO AND FILTER
(ATOMIC_FILTUR : in ATOMIC FILTER;

AND_FILTUR : in out AND_FILTER);

-- Once the AND FILTER is filled with desired ATOMIC FILTERs, it is
added to

-- the FILTER

procedure ADD _AND FILTER TO FILTER
(AND_FILTUR : in out AND FILTER;
FILTUR : in out FILTER);

——- Clears the old FILTER to make way for a new one
procedure CLEAR _FILTER
(F : in out FILTER);

-- Creates a DIRECT_IO file that stores all FILTERs used during the
session

procedure CREATE_FILTER_FILE;

-- Once a new FILTER is created, it is written to the file created in
the

-— above procedure
procedure WRITE FILTER
(F : in FILTER);

-—- Compares a TRACK to the current FILTER to determine whether or not to
-- pass it to the TACPLOT (user display)

function TEST FILTER

(F : FILTER;

T : TRACK) return BOOLEAN;

-- Everything in the active database is passed to TACPLOT
function EVERYTHING return FILTER;

-- Retrieves all FILTERs written to DIRECT IO file and writes them to a
-- human readable text file for historical purposes
procedure WRITE FILTER_ARCHIVES TO TEXT FILE;

pragma INLINE (MAKE DISTANCE ATOMIC FILTER,
MAKE_TRACK_CATEGORY ATOMIC_FILTER,
MAKE_PLATFORM_IDENTITY ATOMIC_ FILTER,
ADD_ATOMIC_FILTER_TO AND_FILTER, ADD_AND FILTER TO FILTER,
CLEAR_FILTER, WRITE FILTER, TEST FILTER, EVERYTHING);

private

type ATOMIC_FILTER

(FILTER_TYPE : FILTER_CATEGORY := DISTANCE_FILTER) is
record

case FILTER TYPE is

when DISTANCE FILTER =>

D_ATTRIB_ID : DISTANCE_ATTRIBUTE_ID;
D_LIMIT : DISTANCE;

REFERENCE_TRACK : TRACK;

D_RELATION : RELATION_ID;

when TRACK_CATEGORY_FILTER =>
DESIRED TRK_CAT : TRACK_CATEGORY;

EQ REL_ID1 : EQUALITY_ RELATION_ID;
when PLATFORM_IDENTITY FILTER =>
DESIRED PLAT ID : IDENTITY_ TYPE;

EQ REL_ID2 : EQUALITY RELATION_ID;
end case;

end record;

-- Data structure used to link up all ATOMIC_FILTERs of an AND_FILTER
type ATOMIC_FILTER_NODE;

type ATOMIC_FILTER _PTR is access ATOMIC FILTER _NODE;

type ATOMIC FILTER NODE is

record

ATM FILTER : ATOMIC_FILTER;

NEXT ATOMIC_FILTER : ATOMIC_FILTER_PTR;

end record;

type AND FILTER is

record

FIRST_ATOMIC_FILTER : ATOMIC_FILTER_PTR;
end record;

-- Data structure used to link up all AND_FILTERs of a FILTER
type AND_FILTER_NODE;

type AND_FILTER_PTR is access AND FILTER_NODE;

type AND FILTER NODE is

record

AND_FLTR : AND_FILTER;

NEXT_AND FILTER : AND FILTER PTR;

end record;

type FILTER is

record

FIRST AND FILTER : AND_FILTER PTR;
end record;

-- Each ATOMIC_FILTER within the FILTER is written to the DIRECT_IO file

-— 1in the reccrd format below

type ATOMIC_FILTER OUT is

record ,

FILTER NUM : POSITIVE;-- Number of the FILTER that the
-— ATOMIC_FILTER belongs to

AND_FILTER_NUM : NATURAL; -- Number of the AND FILTER that the
-- ATOMIC_FILTER belongs to

ATOMIC_FILTUR : ATOMIC_FILTER;

TIME_OUT : ABSOLUTE_TIME;-- Date & time the FILTER was written
-- to the file

end record;

package FILTER _INOUT is new DIRECT_IO (ATOMIC_FILTER OUT);
use FILTER INOUT;

end FILTER PKG;

—— Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

with GLOBAL_POSITION_PKG, RELATIVE POSITION_PKG, UNCHECKED DEALLQOCATION,
ABSOLUTE_TIME_PKG, RELATIVE_TIME PKG, TEXT_ IO;

use GLOBAL_POSITION_PKG, RELATIVE_POSITION_PKG, ABSOLUTE TIME_PKG,
RELATIVE_TIME PKG;

package body FILTER_PKG is

procedure MAKE DISTANCE_ATOMIC FILTER

(DAF_ATTRIB_ID : in DISTANCE_ATTRIBUTE 1ID;
DAF_LIMIT : in DISTANCE;

DAF_REF_TRACK : in TRACK;

DAF_RELATION : in RELATION_ID;

ATOMIC _FILTUR : out ATOMIC FILTER) is

begin

ATOMIC_FILTUR.D ATTRIB_ID := DAF_ATTRIB ID;
ATOMIC_FILTUR.D LIMIT := DAF LIMIT;
ATOMIC_FILTUR.REFERENCE_TRACK := DAF REF_TRACK;

ATOMIC _FILTUR.D RELATION := DAF_RELATION;

end MAKE DISTANCE ATOMIC_FILTER;

procedure MAKE_TRACK CATEGORY ATOMIC FILTER
(TCAF_DESIRED_TRK_CAT : in TRACK_CATEGORY;
TCAF_EQ_REL_ID : in EQUALITY RELATION ID;
ATOMIC_FILTUR : out ATOMIC FILTER) is

TCAF : ATOMIC_FILTER (TRACK_CATEGORY FILTER);
begin

TCAF .DESIRED_TRK_CAT := TCAF_DESIRED TRK_CAT;
TCAF.EQ_REL_ID1 := TCAF_EQ REL_ID;

ATOMIC_FILTUR := TCAF;

end MAKE_TRACK_CATEGORY_ATOMIC_FILTER;

...................... MAKE_PLATFORM_IDENTITY ATOMIC FILTER..............
procedure MAKE PLATFORM_IDENTITY ATOMIC FILTER
(PIAF_DESIRED PLAT_ID : in IDENTITY TYPE;

159

PIAF_EQ REL_ID : in EQUALITY RELATION ID;
ATOMIC_FILTUR : out ATOMIC_FILTER) is

PIAF : ATOMIC_FILTER (PLATFORM IDENTITY FILTER);
begin

PIAF .DESIRED PLAT_ID := PIAF DESIRED PLAT_ID;
PIAF.EQ REL_ID2 := PIAF_EQ REL_ID;

ATOMIC FILTUR := PIAF;

end MAKE_PLATFORM_ IDENTITY ATOMIC FILTER;

procedure ADD ATOMIC FILTER TO AND FILTER
(ATOMIC_FILTUR : in ATOMIC_ FILTER;
AND_FILTUR : in out AND_FILTER) is

ATOMIC FILTUR_PTR : ATOMIC FILTER PTR;

begin

ATOMIC_FILTUR_PTR := new ATOMIC_FILTER NODE;
ATOMIC_FILTUR PTR.ATM_FILTER := ATOMIC FILTUR;

-- If the newly-created ATOMIC_FILTER is the first to be added to the

-- current AND_FILTER, its position is recorded as such in the
AND FILTER.

-- All subsequent ATOMIC_FILTERs are appended to the head of the

-- AND_FILTER linked list of ATOMIC_FILTERs

if AND_FILTUR.FIRST_ATOMIC FILTER /= null then

ATOMIC_FILTUR_PTR.NEXT_ ATOMIC_FILTER := AND FILTUR.FIRST ATOMIC_FILTER;
end if;

AND_FILTUR.FIRST_ATOMIC_FILTER := ATOMIC FILTUR_PTR;

end ADD_ATOMIC FILTER TO AND FILTER;

160

procedure ADD_AND FILTER TO_FILTER
(AND_FILTUR : in out AND FILTER;
FILTUR : in out FILTER) is

AFP : AND_FILTER PTR;
ANF : AND_FILTER := AND_FILTUR;

begin

AFP := new AND FILTER NODE;
AFP.AND FLTR := ANF;

-- If the newly-filled AND FILTER is the first tc be added to the
-- current FILTER, its position is recorded as such in the FILTER.
-- All subsequent AND_FILTERs are appended to the head of the

-- FILTER linked list of AND FILTERS

if FILTUR.FIRST_AND FILTER /= null then

AFP .NEXT_AND FILTER := FILTUR.FIRST_AND FILTER;

end if;

FILTUR.FIRST AND FILTER := AFP;

AND FILTUR.FIRST_ATOMIC_FILTER := null; -- Reset for new AND FILTER

end ADD_AND FILTER _TO FILTER;

procedure CLEAR_FILTER
(F : in out FILTER) is

procedure FREE_ATOMIC_FILTER is
new UNCHECKED LEALLOCATION(ATOMIC_FILTER_NODE, ATOMIC FILTER_PTR);

procedure FREE AND FILTER is
new UNCHECKED_DEALLOCATION(AND_FILTER NODE, AND_FILTER PTR);

ATFP : ATOMIC_FILTER_PTR;

161

ANFP : AND_FILTER_PTR;
NEXT_ATOMIC_PTR : ATOMIC FILTER_PTR;
NEXT_AND PTR : AND_FILTER_PTR;

begin

-- Don’t bother clearina an already empty FILTER
if F.FIRST_AND FILTER = null then

return;

else

-- Start the clear operation at the first AND FILTER
ANFP := F.FIRST_AND_ FILTER;

-- Keep clearing until no more AND FILTERs
while ANFP /= null loop

NEXT_AND_PTR := ANFP.NEXT AND FILTER;

-- Get the first ATOMIC_FILTER of this AND_FILTER
ATFP := ANFP.AND FLTR.FIRST ATOMIC_FILTER;

-— Clear all the ATOMIC_FILTERs of this AND_ FILTER
while ATFP /= null loop
NEXT ATOMIC_PTR := ATFP.NEXT_ATOMIC_FILTER;
FREE_ATOMIC FILTER (ATFP);
ATFP := NEXT_ATOMIC_PTR;

end loop;

-- Clear the AND_FILTER
FREE_AND FILTER (ANFP);

-- Get the next AND_FILTER
ANFP := NEXT_AND_ PTR;

end loop;
end if;

F.FIRST AND FILTER := null;

162

end CLEAR_FILTER;

............................. CREATE FILTER FILE....euuieueeennnnnennnn..
procedure CREATE_FILTER FILE is

FILTER_FILE : FILTER INOUT.FILE_TYPE; -- Archive file
begin

FILTER_INOUT.CREATE (FILTER_FILE, INOUT_ FILE, “FILTER FILE”);
FILTER_INOUT.CLOSE (FILTER FILE);

end CREATE FILTER FILE;

................................ WRITE FILTER....... ..ty
procedure WRITE FILTER
(F : in FILTER) is

FILTER FILE : FILTER INOUT.FILE_TYPE; -- Archive file

FLTR_NUM : POSITIVE;-- Number of FILTERs in archive

F_INDEX : NATURAL;-- Write index

AND_FLTR_NUM : NATURAL := 1;-- Number of AND FILTERS
ATOMIC_FLTR_OUT : ATOMIC FILTER OUT;-- Archive element structure
ATFP : ATOMIC_FILTER_PTR;

ANFP : AND_FILTER_PTR;

WRITE_TIME : ABSOLUTE_TIME := NOW;-- Time of write operation
AF_OUT : ATOMIC_FILTER OUT;

begin

-— Open archive file & find end of file to determine where to write the
-- next FILTER

FILTER_INOUT.OPEN (FILTER_FILE, INOUT FILE, “FILTER FILE”);
F_INDEX := NATURAL (FILTER INOUT.SIZE (FILTER FILE)) + 1;

-- Read last FILTER in file to get its FILTER number, then add 1 to
assign

-- new FILTER number
if FILTER_INOUT.SIZE (FILTEP_FILE » > 0 then
FILTER_INOUT.READ (FILTER_FILE, Ar_OUT, POSITIVEﬁCOUNT

163

(SIZE (FILTER_FILE)}));
FLTR NUM := AF OUT.FILTER_NUM + 1;
else
FLTR_NUM := 1;
end if;

-- Set write index
FILTER_INOUT.SET_INDEX (FILTER_FILE, POSITIVE_COUNT (F_INDEX));

-- Get first AND_FILTER
ANFP := F.FIRST_AND_ FILTER;

-- Assign values to output structure
ATOMIC_FLTR_OUT.FILTER NUM := FLTR NUM;
ATOMIC_FLTR_OUT.TIME_OUT := WRITE TIME;

-- There will be no AND_FILTERs if the FILTER is set to accept all
TRACKs

if ANFP = null then

ATOMIC_FLTR_OUT.AND_FILTER NUM := C;

FILTER_INOUT.WRITE (FILTER_FILE, ATOMIC FLTR_OUT,
POSITIVE COUNT (F_INDEX) };

else

-- While there are still AND FILTERs left to write
while ANFP /= null loop

—-— Assign AND_FILTER number to output structure
ATOMIC_FLTR_OUT.AND_FILTER _NUM := AND FLTR_NUM;

-- Get first ATOMIC_FILTER of this AND FILTER
ATFP := ANFP.AND_FLTR.FIRST ATOMIC_FILTER;

-- While there are still ATOMIC FILTERs left to write
while ATFP /= null loop

-- Assign ATOMIC_FILTER to output structure
ATOMIC_FLTR_OUT.ATOMIC_FILTUR := ATFP.ATM FILTER;

-~ Write output structure to archive file
FILTER _INOUT.WRITE (FILTER FILE, TOMIC_FLTR_OUT,

164

POSITIVE_COUNT (F_INDEX));

-- Increment write index
F_INDEX := F_INDEX + 1;

-- Get next ATOMIC_FILTER
ATFP := ATFP.NEXT_ATOMIC_ FILTER;

end loop;

-- Increment AND_FILTER number for next AND FILTER
AND FLTR_NUM := AND FLTR NUM + 1;

-- Get next AND_FILTER
ANFP := ANFP.NEXT AND FILTER;

end loop;

end if;

FILTER INOUT.CLOSE (FILTER FILE);

end WRITE FILTER;

function TEST_FILTER
(F : FILTER;
T : TRACK) return BOOLEAN is

B : BOOLEAN := FALSE;

AF : ATOMIC_FILTER;

ATFP : ATOMIC_FILTER_PTR;
ANFP : AND_FILTER PTR;

-- Tests input TRACK against one ATOMIC FILTER and returns the result
function TEST ATOMIC FILTER
(ATF : ATOMIC_FILTER) return BOOLEAN is

TGT_POS : GLOBAL POSITION;
REF_PC3 : GLOBAL POSITION;

T CATEG : TRACK_CATEGORY := TRK_CATEGORY (T);
T _ID : IDENTITY TYPE;

begin

case ATF,FILTER_TYPE is

-- ATOMIC FILTER based on distance-type attributes
when DISTANCE FILTER => N

case ATF.D_ATTRIB_ID is .

-- Distance-type attribute is range from a reference TRACK
when RANGE_FROM REFERENCE_TRACK =>

-- Get reference & target positions
REF_PO! CURRENT_POSITION (ATF.REFERENCE_TRACK };
TGT_POS CURRENT_POSITION (T);

]

case ATF.D_RELATION is

-- Range from reference TRACK must be egual to the input
-- parameter value in order to pass
when EQUAL =>
if RANGE _OF (FIND RELATIVE POSITION
(TGT_POS, REF_POS)) = ATF.D_LIMIT then
return TRUE;

else
return FALSE;
end if;

-—- Range from reference TRACK must not be equal to the input

~~ parameter value in order to pass
when NOT_EQUAL => .
if RANGE OF (FIND RELATIVE POSITION

(TGT_PCS, REF_POS)) /= ATF.D_LIMIT then .

return TRUE;
else

return FALSE;

end if;

166

-~ Range from reference TRACK must be less than the input
-- parameter value in order to pass
when LESS =>
if RANGE OF (FIND_RELATIVE POSITION
(TGT_POS, REF_POS)) < ATF.D_LIMIT then
return TRUE;
else
return FALSE;
end if;

-- Range from reference TRACK must be less than or equal to the
-- input parameter value in order to pass
when LESS_OR_EQUAL =>

if RANGE OF (FIND RELATIVE POSITION

(TGT_POS, REF_POS)) <= ATF.D_LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Range from reference TRACK must be greater than the input
-- parameter value in order to pass
when GREATER =>

if RANGE_OF (FIND RELATIVE POSITION

(TGT _PCS, REF_POS)) > ATF.D_LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Range from reference TRACK must be greater than or equal to
-- the input parameter value in order to pass
when GREATER _CR_EQUAL =>

if RANGE OF (FIND RELATIVE POSITION

(TGT_POS, REF_POS)) >= ATF.D_LIMIT then

return TRUE;

else

return FALSE;

end if;

end case;

167

-~ Distance-type attribute is altitude
when ALTITUDE =>

-~ Since altitude applies only to aircraft, others will fail this
-~ test

if TRK_CATEGORY (T) /= AIR_PLATFORM then

return FALSE;

end if;

case ATF.D RELATION is

-- Altitude must be equal to the input parameter value in order
-- to pass

when EQUAL =>

if ALTITUDE (T) = ATF.D_LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Altitude must not be equal to the input parameter value in
-- order to pass
when NOT EQUAL =>

if ALTITUDE (T) /= ATF.D_LIMIT then

return TRUE;

else

return FALSE;

end if;

~— Altitude must be less than the input parameter value in order
-- to pass
when LESS =>

if ALTITUDE (T) < ATF.D_LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Altitude must be less than or equal to the input parameter

-- value in order to pass

168

when LESS OR EQUAL
if ALTITUDE (T) <= ATF.D_LIMIT then
return TRUE;
else
return FALSE;
end if;

Il
v

-- Altitude must be greater than the input parameter value in
-- order to pass
when GREATER =>

if ALTITUDE (T) > ATF.D_LIMIT then

return TRUE;

else

return FALSE;

end if;

-- Altitude must be greater than or equal to the input parameter
-- value in order to pass
when GREATER OR_EQUAL =>

if ALTITUDE (T) >= ATF.D LIMIT then

return TRUE;

else

return FALSE;

end 1if;

end case;

end case;

-- ATOMIC_FILTER based on categcry-type attributes
when TRACK_CATEGORY FILTER =>

case ATF.EQ REL_ID1 is

-- TRACK_CATEGORY must be equal to the input parameter value in
-- order to pass

when EQUAL =>

if T _CATEG = ATF.DESIRED_TRK_CAT then

return TRUE;

else

return FALSE;

169

end if;

~- TRACK CATEGORY must not be equal to the input parameter value

-~ in order to pass

when NOT_EQUAL =>

if T_CATEG /= ATF.DESIRED_TRK CAT then

return TRUE;

else

return FALSE; .
end if;

end case;

-- ATOMIC FILTER based on category-type attributes
when PLATFORM_ IDENTITY FILTER =>

~— IDENTITY applies only to platforms below
if (T_CATEG = SURFACE_PLATFORM) OR

(T_CATEG = SUBSURFACE_PLATFORM) OR

{ T_CATEG = AIR _PLATFORM) then

T_ID := TRACK_IDENTITY (T);
case ATF.EQ REL_IDZ is

~— IDENTITY TYPE must be equal to the input parameter value
-- 1in order to pass
when EQUAL =>

if T ID = ATF.DESIRED PLAT ID then

return TRUE;

else

return FALSE;

end if;

-- IDENTITY_TYPE must not be equal to the input parameter value
~- in order to pass
when NOT_EQUAL =>

if T _ID /= ATF .DESTRED PLAT ID then

return TRUE;

else

return FALSE;

end if;

end case;

else -- Non-applicable TRACK types

-— Since IDENTITY doesn’t apply to other TRACKs, if the
-- ATOMIC_FILTER requires an equality relation to an IDENTITY
-- it must always fail. Likewise, a non-equal parameter must
-—- always succeed.

if ATF.EQ REL_IDZ = EQUAL then

return FALSE;

else

return TRUE;

end 1if;

end if;
end case;
end TEST ATOMIC FILTER;
begin -- TEST FILTEK
-- All TRACKs pass an ‘EVERYTHING’ FILTER
if F = EVERYTHING then
return TRUE;

else

-~ Get first AND_FILTER
ANFP := F.FIRST AND FILTER;

-- Test all AND _FILTERs (if necessary)
while ANFP /= null loop

-- Get first ATOMIC_FILTER of this AND FILTER
ATFP := ANFP.AND_FLTR.FIRST_ATOMIC FILTER;

-- Test all ATOMIC_FILTERs of this AND FILTER (if necessary)
while ATFP /= null lcop

AF := ATFP.ATM FILTER;

-- Test the TRACK against this ATOMIC_FILTER
B := TEST_ATOMIC_FILTER (AF);

-- A failure of one ATOMIC FILTER in an AND_FILTER constitutes a
-- failure of the entire AND_FILTER, so move on to the next
-- AND_FILTER

if B = FALSE then

exit;

end if;

-- Get next ATOMIC_FILTER (previous one passed)
ATFP := ATFP.NEXT ATOMIC_FILTER;

end loop;
-- If the TRACK passed all ATOMIC_FILTERs of the previous AND_FILTER,
-- no need to continue. It passes the FILTER.

if B = TRUE then

return B;

end if;

-- TRACK did not pass the previous AND_FILTER, so get the next one.
ANFP := ANFP.NEXT_AND FILTER;

end loop;

end if;

return B;

end TEST_FILTER;

function EVERYTHING return FILTER is
F : FILTER;

begin

return F;
end EVERYTHING;

....................... WRITE FILTER ARCHIVES TO TEXT FILE...............
procedure WRITE FILTER ARCHIVES TO TEXT FILE is

AF : ATOMIC_FILTER;
FC : FILTER_CATEGORY;

TC : TRACK_CATEGORY;
PID : IDENTITY TYPE;

RID : RELATION_ ID;

EQ : EQUALITY RELATION_ID;

FILTER FILE : FILTER INOUT.FILE TYPE;-- Archive file
FILTER HIS_FILE : TEXT_IO.FILE TYPE;-- Text file of all FILTERs

FLTR_NUM : POSITIVE;-- FILTER number in file

F_INDEX : NATURAL;

AND_FLTR _NUM : NATURAL;-- AND FILTER number in FILTER
ATOMIC FLTR_OUT : ATOMIC_FILTER OUT;

WRITE_TIME : ABSOLUTE TIME;-- Time FILTER archived
FINISHED : BOOLEAN := FALSE;-- Flags when no more FILTERs
DASHES : STRING (1.. 80) := (others => ‘=’);

-- Writes time of archive to text file
procedure PRINT_ TIME OUT is

Y, M, D : NATUPRAL;

S : FLOAT;

begin

Y := YEAR (WRITE_TIME);

M := MONTH (WRITE TIME);

D := DAY (WRITE _TIME);

S := TIME_OF_ DAY (WRITE TIME);

TEXT_I0.PUT (FILTER_HIS FILE, NATURAL'IMAGE (M));
TEXT I0.PUT (FILTER_HIS FILE, “/");
TEXT_IO.PUT (FILTER H'S_FILE, NATURAL’IMAGE (D));
TEXT_IO.PUT (FILTER HIS FILE, “/”);

173

TEXT_IO.PUT (FILTER HIS FILE, NATURAL’IMAGE (Y - 1900));
TEXT_IO.PUT (FILTER HIS FILE, ™ “);
TEXT_IO.PUT (FILTER _HIS FILE, NATURAL’ IMAGE

(HOURS (TIME_OF DAY (WRITE_TIME))));
TEXT_IO.PUT (FILTER HIS FILE, ‘:’);
TEXT_IO.PUT (FILTER _HIS FILE, NATURAL’ IMAGE

(MINUTES (TIME OF DAY (WRITE TIME))));
TEXT_I0.PUT (FILTER HIS FILE, ‘:’);
TEXT_IO.PUT (FILTER_HIS_FILE, NATURAL’IMAGE

(NATURAL (SECONDS (TIME OF DAY (WRITE TIME)))));
end PRINT TIME OUT;

begin -- WRITE FILTER ARCHIVES TO TEXT FILE

-- Open archive & create text files
FILTER_INOUT.OPEN (FILTER FILE, INOUT_FILE, “FILTER FILE”);
TEXT_IOC.CREATE (FILTER_HIS_FILE, NAME => “FILTER.HIS"”);

-- Read in first archived FILTER
FILTER_INOUT.READ (FILTER _FILE, ATOMIC FLTR QUT);

-- Read in all archived FILTERs and convert them to human-readable
format

-- for output to text file

while NOT FINISHED loop

FLTR_NUM := ATOMIC_FLTR_OUT.FILTER_NUM;

WRITE_TIME := ATOMIC FLTR_OUT.TIME_ OUT;

TEXT_IO.PUT (FILTER_HIS_FILE, “FILTER NUMBER :”);
TEXT_IO.PUT (FILTER_HIS_FILE, POSITIVE’IMAGE (FLTR _NUM));
TEXT_IC.SET_COL (FILTER _HIS FILE, 35);

PRINT TIME OUT;

TEXT_IO.NEW_LINE (FILTER HIS FILE, 2);

while (FLTR_NUM = ATOMIC_FLTR_OUT.FILTER NUM) AND (NOT FINISHED)
loop

AND FLTR_NUM := ATOMIC_FLTR_OUT.AND FILTER_NUM;

if AND FLTR_NUM = 0 then

TEXT_IO.PUT_LINE (FILTER_HIS FILE, “ ALL TRACKS ACCEPTED”);
TEXT_IO.NEW_LINE (FILTER_HIS FILE);

if NOT FILTER INOUT.END OF FILE (FILTER FILE) then
FILTER_INOUT.READ (FILTER FILE, ATOMIC_FLTR_OUT);
else

FINISHED := TRUE;

end if;

else

TEXT_IOC.PUT (FILTER_HIS_FILE, “ AND FILTER NUMBER :”);

TEXT IO.PUT (FILTER_HIS_FILE, POSITIVE’ IMAGE (AND FLTR_NUM));
TEXT_IO.NEW_LINE (FILTER_HIS_FILE);

while (AND_FLTR NUM = ATOMIC_FLTR OQUT.AND FILTER NUM) AND
(NOT FINISHED) loop

AF := ATOMIC FLTR_OUT.ATOMIC_FILTUR;

FC := AF.FILTER_TYPE;

TEXT_I0.SET_COL (FILTER HIS FILE, 7);

case FC is

when DISTANCE FILTER =>
RID := AF.D_RELATION;

if AF.D_ATTRIB_ID = RANGE_FROM REFERENCE_TRACK then
TEXT_IO.PUT (FILTER_HIS_FILE, “RANGE FROM REFERENCE TRACK”);
TEXT IO.PUT (FILTER HIS_FILE, NATURAL’ IMAGE

(TRACK_ID NUMBER (AF.REFERENCE_TRACK)));
else

TEXT_I0.PUT (FILTER_HIS FILE, “ALTITUDE”);
end if;

case RID is

when EQUAL =>

TEXT _IO.PUT (FILTER_HIS FILE, ™ =");
when NOT _EQUAL =>

TEXT_IO.PUT (FILTER_HIS_FILE, “ <>");
when LESS =>

TEXT IO.PUT (FILTER _HIS FILE, ™ <“);
when LESS_OR_EQUAL =>

TEXT_IO.PUT (FILTER HIS_FILE, “ <=");
when GREATER =>

TEXT_I0.PUT (FILTER HIS FILE, ™ >");

175

when GREATER_OR_EQUAL =>
TEXT_IO.PUT (FILTER_HIS_FILE,
end case;

WS) ;

TEXT_IO.PUT (FILTER_HIS_FILE, NATURAL’IMAGE (NATURAL

(AF.D_LIMIT)));
TEXT_IO.PUT_LINE

when TRACK CATEGORY FILTER =>
TC AF .DESIRED_TRK_CAT;

EQ AF.EQ REL_1ID1;
TEXT_IO.PUT (F1LTER _HIS_FILE,

i

case EQ 1is

when EQUAL =>

TEXT_IC.PUT (FILTER_HIS_FILE,
when NOT_EQUAL =>

TEXT_IO.PUT (FILTER_HIS FILE,
end case;

case TC is

when TRACK PKG.UNKNOWN =>
TEXT_IO.PUT (FILTER_HIS FILE,
when SURFACE_PLATFORM =>
TEXT_IO.PUT (FILTER_HIS_FILE,
when SUBSURFACE_ PLATFORM =>
TEXT_IO.PUT (FILTER HIS FILE,
when AIR PLATFORM =>
TEXT_IO.PUT (FILTER_HIS FILE,
when REGION =>

TEXT_IO0.PUT (FILTER_HIS _FILE,
when SPECIAL_POINT =>
TEXT_IO.PUT (FILTER_HIS FILE,
when PATH =>

TEXT_IO.PUT (FILTER_HIS FILE,
when MAN IN WATER =>

TEXT IO.PUT (FILTER HIS FILE,
when NON DISPLAYABLE =>

TEXT _IO.PUT (FILTER HIS FILE,
end case;

(FILTER_HIS FILE,

w yards" Y;

“TRACK CATEGORY”);

wogs o om) ;

“UNKNOWN") ;

“SURFACE PLATFORM”);

“SUBSURFACE_PLATFORM”);

“AIP_PLATFORM”);

“REGION”);

“SPECIAL_POINT”);

“PATH") ;

“MAN IN_WATER”);

“"NON DISPLAYABLE”);

TEXT_IO.NEW_LINE (FILTER HIS_FILE);

when PLATFORM_IDENTITY FILTER =>
PID := AF.DESIRED PLAT ID;

EQ := AF.EQ REL_IDZ;

TEXT I0.PUT (FILTER HIS FILE, “PLATFORM IDENTITY”);

case EQ is

when EQUAL =>

TEXT_IO.PUT (FILTER_HIS_FILE, “ = “);
when NOT_EQUAL =>

TEXT_IO.PUT (FILTER HIS_FILE, ™ <> ™);
end case;

case PID is

when TRACK PKG.UNKNOWN =>

TEXT IOC.PUT (FILTER_HIS_FILE, “UNKNOWN”);
when FRIENDLY
TEXT_I10.PUT (FILTER HIS FILE, “FRIENDLY”);
when HOSTILE =>

TEXT_I0.PUT (FILTER HIS FILE, “HOSTILE”);

when NEUTRAL =>

TEXT_I0.PUT (FILTER HIS FILE, “NEUTRAL”);

end case;

>

TEXT_IO.NEW_LINE (FILTER HIS FILE);

end case;

if NOT FILTERslNOUT.END_OF_FILE (FILTER_FILE) then
FILTER_INCUT.READ (¢ FILTER FILE, ATOMIC_FLTR_OUT);
else

FINISHED := TRUE;

end if;

end loop;

TEXT_IO.NEW_LINE (FILTER_HIS_FILE);

end if;

end loop;
TEXT_IO.PUT_LINE (FILTER_HIS_FILE, DASHES);
end loop;

FILTER INOUT.CLOSE (FILTER_FILE);
TEXT_I10.CLOSE (FILTER HIS FILE);

end WRITE FILTER_ARCHIVES_TO TEXT FILE;

..

end FILTER_PKG;

178

APPENDIX E

CPA PACKAGE

-- Authors : Richard T. Irwin
~- Willie K. Bolick

-- Date : 29 August 1991

-- Description . Jefines data type CPA_TYPE and associated function
FIND_CPA

with VECTOR_2_PXG, ABSOLUTE TIME PKG, TRACK_PKG;
use VECTOR_2Z_ PKG, ABSOLUTE TIME PKG, TRACK PKG;
package CPA PKG is

type CPA TYPE is

record

CPA_BEARING_AND RANGE : VECTOR_2; -- Bearing & range to target frcm
-- reference at CPA

TIME OF CPA : ABSOLUTE TIME; -- Time when CPA occurs

end record;

-~ Finds Closest Pcint of Approach of target track to the reference
track

functicn FIND_CPA
(TARGET_TRK, REFERENCE_TRACK : TRACK) return CPA TYPE;

pragma INLINE (FIND CPA);

end CPA_PKG;

179

with ANGLE_PKG, SPEED_PKG, DISTANCE_PKG, GLOBAL_ POSITION_ PKG,
RELATIVE_ TIME PKG,

VELOCITY_ PKG, RELATIVE POSITION_ PKG, MATH;

use ANGLE_PKG, SPEED _PKG, DISTANCE_PKG, GLOBAL_POSITION_PKG,
RELATIVE_TIME_PKG,

VELOCITY PKG, RELATIVE_POSITION_PKG;
package body CPA_PKG is

function FIND CPA
(TARGET_TRK, REFERENCE_TRACK : TRACK) return CPA TYPE is

CPA_TO_TARGET : CPA_TYPE;
TGT_BEARING : ANGLE;-- true brg to target
TGT _RANGE : DISTANCE;-- range to target (yds)
TGT_REL_SPEED : SPEED;-- rel spd of target
TGT_REL_COURSE : ANGLE;-- rel crs of target
PERPENDICULAR 1,-~- perp of tgt rel crs
PERPENDICULAR_2 : ANGLE;-- perp of tgt rel crs
Pl _DIFF, -- diff bet tgt rel crs
P2 DIFF : ANGLE;-- & the perpendiculars
CPA_BEARING : ANGLE;-- bearing to target at cpa
CPA_RANGE : DISTANCE;-- range to target at cpa
CPA_TIME : RELATIVE TIME;-- time in secs to cpa
ALPHA : ANGLE;-- angle bet bearing to

-- tgt & bearing to cpa
BRAVO : ANGLE;-- angle bet bearing to

-- tgt & tgt rel crs
REL_VELOCITY : VELOCITY;
LAST_TGT_POSITION,
LAST_REF_POSITION,
OPENING_POS_TGT,
OPENING_POS_REF : GLOBAL_POSITION;
OPENING_RG : DISTANCE;
OBS_TIME : ABSOLUTE TIME := NOW;

begin

180

-- Get current positions of target & reference tracks
LAST REF_POSITION CURRENT POSITION (REFERENCE_TRACK);
LAST TGT_POSITION CURRENT POSITION { TARGET_TRK);

-~ Find present bearing & range to target
TGT_BEARING := BEARING_TO (FIND_RELATIVE POSITION
(LAST TGT_POSITION, LAST REF_POSITION));
TGT_RANGE := RANGE_OF (FIND_RELATIVE_POSITION
(LAST_TGT POSITION, LAST_REF_POSITION));

-- Get target’s relative course & speed

REL_VELOCITY := TARGET RELATIVE_VELOCITY (REFERENCE_TRACK, TARGET_TRK
)i

TGT_REL_COURSE := COURSE (REL_VELOCITY);

TGT_REL_SPEED := SPD (REL_VELOCITY);

-- Get target’s & reference’s position again to determine if they
-- are opening one another
OPENING_POS_REF CURRENT_POSITION (REFERENCE_TRACK);
OPENING_POS TGT CURRENT POSITION (TARGET_TRK);
OPENING RG := RANGE OF (FIND RELATIVE_POSITION

(OPENING_POS TGT, OPENING_POS_REF));

I

-- If target & reference are opening or if the target has no relative
speed,

-- no CPA possible
if (OPENING RG > TGT_RANGE) or (TGT_REL_SPEED = 0.0) then

CPA_BEARING := TGT_BEARING;
CPA_RANGE := TGT_RANGE;
CPA_TIME := 0.0;

else

-— The bearing to the target at cpa will be 90 degrees +/- the target’s
-- relative course. The problem is finding out which one applies. To

-- determine the correct one, computations are made on both
perpendiculars

-- The perpendicular closest to the target’s bearing is the cpa bearing.

-- Subtract 90 degrees from target’s relative course to get perpl
PERPENDICULAR_1 := TGT_REL COURSE - MATH.PI / 2.0;

181

-- If target’s relative course < 270, add 90 degrees to get perpz,
-- otherwise subtract 90 degrees
if TGT_REL_COURSE < MATH.PI * 3.0 / 2.0 then

PERPENDICULAR 2 := TGT REL COURSE + MATH.PI / 2.0;
else

PERPENDICULAR 2 := PERPENDICULAR_1 - MATH.PI;

end if;

-- If computed perpl is negative, add 360 degrees to correct
if PERPENDICULAR 1 < 0.0 then

PERPENDICULAR 1 := MATH.PI * 2.0 + PERPENDICULAR 1;

end if;

-- If computed perp2 1is negative, add 360 degrees to correct
if PERPENDICULAR 2 < 0.0 then

PERPENDICULAR 2 := MATH.PI * 2.0 + PERPENDICULAR 2;

end if;

-- Compute absolute difference between target’s bearing & perpl
P1 DIFF := ABS (TGT BEARING - PERPENDICULAR 1);

-- If difference is > 180 degrees in one direction, it is < 180 in
-- the other direction, so choose the shortest one

if P1_DIFF > MATH.PI then

P1_DIFF MATH.PI * 2.0 - Pl DIFF;

end if;

—- Compute absolute difference between target’s bearing & perp2
P2_DIFF := ABS (TGT_BEARING - PERPENDICULAR 2);

~-- If difference is > 180 degrees in one direction, it is < 180 in
-- the other direction, so choose the shortest one

if P2 _DIFF > MATH.PI then

P2 DIFF := MATH.PI * 2.0 - P2 DIFF;

end if;

-— The smallest difference determines the correct perpendicular to use
—-- as cpa bearing

if P1_DIFF < P2 DIFF then

CPA_BEARING := PERPENDICULAR 1;

182

elsif P1_DIFF > P2 _DIFF then

CPA_BEARING := PERPENDICULAR_Z2:

else

-— ** CBDR ** (Constant Bearing, Decreasing Range) Crash coming!
CPA_BEARING := TGT_BEARING;

end if;

-- Need to find angle between cpa bearing and target’s current bearing
-—- so we can compute the distance from target’s current position and
—-- its position at cpa

ALPHA := ABS (CPA_BEARING - TGT_BEARING);

-- If the angle is > 180 degrees in one direction, it is < 180 in
-- the other direction, so choose the shortest one

if ALPHA > MATH.PI then

ALPHA := MATH.PI * 2.0 - ALPHA;

end if;

-- The angle between the target’s relative course and its bearing at cpa
-- is 90 degrees. We just computed a second angle (ALPHA) of the

-- triangle, so the remaining angle of the triangle is 90 degrees minus
—-- ALPHA. This angle (BRAVO) gives us the angle between the target’s

-— relative course and the true bearing to the target.

BRAVO := MATH.PI / 2.0 - ALPHA;

-- Compute range to target at cpa and time of cpa
if ALPHA = 0.0 then -- ** CBDR **

CPA_TIME := TGT_RANGE / TGT_REL SPEED;

CPA RANGE := (.0;

else

CPA_RANGE := TGT RANGE * DISTANCE (SIN (BRAVO) };

-- Pythagorean Theorem used

CPA_TIME := SQRT (TGT_RANGE * TGT_RANGE - CPA_RANGE * CPA RANGE) /
TGT_REL_SPEED;

end if;

end if;

CPA_TO_TARGET.CPA_BEARING_AND_ RANGE := MAKE POLAR _VECTOR 2
(CPA_RANGE, CPA_BEARING);

CPA_TO_TARGET.TIME_OF CPA := CPA TIME + OBS_TIME;

return CPA TO_ TARGET;

end FIND_CPA;

end CPA_PKG;

184

APPENDIX F

VELOCITY PACKAGE

~- Authors : Richard T. Irwin
-—- Willie K. Bolick

-— Date : 29 August 1991

-- Description : Defines data subtype VELOCITY and associated functions

with VECTOR 2 PKG, SPEED PKG, ANGLE_PKG;

use VECTOR_2_PKG, SPEED_PKG, ANGLE_PKG;

package VELOCITY_ PKG is
subtype VELOCITY is VECTOR 2;-- Course and speed vector
-- Returns course & speed vector, given course & speed values
function MAKE VELOCITY

(SPD : SPEED;

COURSE : ANGLE) return VELOCITY renames
VECTOR_2 PKG.MAKE_POLAR VECTOR 2;

-- Returns course attribute of a velocity vector
function COURSE

(V : VELOCITY) return ANGLE renames VECTOR_ 2 PKG.DIRECTION;

~-- Returns speed attribute of a velocity vector
function SPD

185

(V : VELOCITY) return SPEED renames VECTOR_2_PKG.LENGTH;
pragma INLINE (MAKE VELOCITY, COURSE, SPD);

end VELOCITY_ PKG;

186

APPENDIX G

VECTOR 2 PACKAGE

-~ Authors : Richard T. Irwin
-~ Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines abstrac* data type VECTOR 2 and associated
functions

with ANGLE PKG, MATH;
use ANGLE_PKG;
package VECTOR_2 PKG is

type VECTOR 2 is private;

function SQRT (F : FLOAT) return FLOAT renames MATH.SQRT;
-- Returns a vector, given a length and an angle in radians
function MAKE POLAR_VECTOR 2

(LENGTH : FLOAT;

DIRECTION : ANGLE) return VECTOR 2;

-~ Returns the length attribute of a given VECTOR 2

function LENGTH
(V : VECTOR 2) return FLOAT;

187

-- Returns the angle attribute of a given VECTOR_2
function DIRECTION
(V : VECTOR_2) return ANGLE;

-- Returns a vector, given its end point in terms of X & Y coordinates
function MAKE CARTESIAN VECTOR 2
(X, Y : FLOAT) return VECTOR Z;

—-- Returns the X-coordinate of a vector
function X _COORDINATE
(V : VECTOR_2) return FLOAT;

-- Returns the Y-coordinate of a vector
function Y COORDINATE
(V : VECTOCR_2) return FLOAT;

-- Returns the resultant sum of 2 vectors
function “+”
(v, V2 : VECTOR_2) return VECTOR_Z;

-—- Returns the resultant difference of 2 vectors
function “-”
(Vi, V2 : VECTOR_2) return VECTOR_2;

-- Returns the resultant dot product of 2 vectors
function DOT_PRODUCT
(vi, V2 : VECTOR 2) return FLOAT;

-— Returrns the resultant product of a vector and a scale factor
function “*”

(V : VECTOR_2;

SCALE_FACTOR : FLOAT) return VECTOR 2;

-- Returns a vector rotated about a given angle
function ROTATE

(v : VECTOR_Z;

A : ANGLE) return VECTOR 2;

-- Returns a normalized vector

function NORMALIZE
(V. : VECTOR_2) return VECTOR_Z;

188

pragma INLINE
(MAKE_POLAR VECTOR_2, LENGTH, DIRECTION, MAKE CARTESIAN VECTOR 2
X_COORDINATE, Y COORDINATE, “+”, “-”, DOT PRODUCT, ROTATE, NORMALIZE);

private

type VECTOR_ 2 is
record

X, Y : FLOAT;
end record;

ZERO : constant VECTOR 2 := 0.C, 0.0);

end VECTOR 2_PKG;

"~

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-—- Date : 29 August 1991

package hody VECTOR_Z_PKG is

function MAKE FULAR _VECTOR 2
(LENGTH : FLOAT;
DIRECTION : ANGLE) return VECTOR 2 is

V : VECTOR_2;

begin
V.X := LENGTH * SIN (DIRECTION);
V.Y := LENGTH * COS (DIRECTION);

return V;

189

end MAKE_POLAR VECTOR_2;

function LENGTH
(V : VECTOR 2) return FLOAT is

begin

return SQRT (V.X * V.X + V.Y * V.Y);
end LENGTH;

function DIRECTION
(Vv : VECTOR_Z) return ANGLE is

X, Y : FLOAT;

A : ANGLE;
begin

X = V.X;
Y := V.Y,

if X = 0.0 then

if Y >= 0.0 then
return DEGREES TO RADIANS (0.0);

else

return DEGREES_TO_PRADIANS (180.0);

end if;

elsif Y / X < 0.0 then -- Either X or Y is negative
if Y < 0.0 then -- Y is negative

return DEGREES _TO_RADIANS (90.0) - ARCTAN (Y / X);
else -- X is negative

return DEGREES TO_RADIANS (270.0) -~ ARCTAN (Y / X);
end if;

190

else

if X < 0.0 then -- X and Y are both negative

return DEGREES TC RADIANS (270.0) - ARCTAN (Y / X);
else -- X and Y are both positive (Y could be 0.0)
return DEGREES_TC _RADIANS (90.0) - ARCTAN (Y / X);
end 1if;

end if;

end DIRECTION;

............................ MAKE CARTESTIAN VECTOR 2.covuuunnn...
functicn MAKE CARTESIAN VECTOR 2
{ %, Y : FLOAT) return VECTOR 2 is

V : VECTOR_2;

begin
V.X = X;
V.Y = Y;

return V;

end MAKE CARTESIAN VECTOR 2;

function X COOKDINATE
(V1 VECTOR_2) return FLOAT is

begin

return V.X;
end X_COORDINATE;

function Y COCRDINATE
(V. : VECTOR_Z) return FTOAT is

begin

191

return V.Y;
end Y COORDINATE;

...

function “+”
(V1, V2 : VECTOR_2) return VECTOR_2 is

V : VECTOR_2;

begin

V.X V1.X + V2.X;
V.Y V1.Y + V2.Y;
return V;

f

.......................................

function “-”
(V1, V2 : VECTOR_2) return VECTOR_2 is

V : VECTOR_2;

begin

V.X := V1.X - V2.X;
V.Y = V1.¥Y - V2.Y;
return V;

end _.n;

function DOT_PRODUCT
(V1, v2 : VECTOR 2) return FLOAT is

begin

return V1.X * vV2.X + V1.Y * VvV2.Y;
end DOT_PRODUCT;

192

function “*”
(V : VECTOR_2;
SCALE_FACTOR : FLOAT) return VECTOR_Z is

V2 : VECTOR_2;

begin
-- Length (result) = length (v) * scale_factor
-- Direction (result) = direction (v)

V2.X = V.X * SCALE_FACTOR;
V2.Y := V.Y * SCALE FACTOR;
return V2;

end *II;

.................................. ROTATE . . ot e ittt ettt ettt ae e e ennn
function ROTATE

(V : VECTOR 2;

A : ANGLE) return VECTOR 2 is

D : ANGLE;

V2 : VECTOR_2;

begin

—— Direction { result) = direction (v) + a
-- Length (result ; = length (v)

D := DIRECTION (V) + A;

V2.X := LENGTH (v) * SIN (D);

V2.Y := LENGTH (V) * COS (D);

return V2;

end ROTATE;

193

function NORMALIZE
(V : VECTOR_2) return VECTOR_2 is

D : ANGLE;
V2 : VECTOR 2;

begin

-- Direction (result) = direction (v)
-- Length (result) = 1.0

D := DIRECTION (V);
V2.X 1= COS (D);
V2.Y := SIN (D);

return V2;

end NORMALIZE;

..

end VECTOR_2 PKG;

194

APPENDIX H

VECTOR 3 PACKAGE

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

..

-- Description : Defines abstract data type VECTOR_3 and associated
functions

with ANGLE_ PKG, MATH;
use ANGLE_PKG;
package VECTOR_3 PKG 1is
type VECTOR_3 is private;
function SQRT (F : FLOAT) return FLOAT renames MATH.SQRT;
-- Returns a vector, given a length, an angle in radians, and an azimuth
~- in radians
function MAKE POLAR_VECTOR_3
{ LENGTH : FLOAT;
THETA : ANGLE;

PHI : AZIMUTH) return VECTOR_3;

~- Returns the length attribute of a given VECTCOR_2
function LENGTH

195

(V : VECTOR_3) return FLOAT;

function THETA
(V : VECTOR_3) return ANGLE;

function PHI
(V : VECTOR_3) return AZIMUTH;

-- Returns a vector, given its end point in terms of X, Y, & Z
coordinates

function MAKE CARTESIAN VECTOR 3
(X, ¥, 2 : FLOAT) return VECTOR 3;

--— Returns the X-coordinate of a vector
function X _COORDINATE
{ V : VECTOR_3) return FLOAT;

—-— Returns the Y-coordinate of a vector
function Y_COORDINATE
(V : VECTOR_3) return FLOAT;

-- Returns the Z-coordinate of a vector
function Z_COORDINATE
(V : VECTCR_3) return FLOAT;

-- Returns the resultant sum of 2 vectors
function “+”
(V1, v2 : VECTOR_3) return VECTOR 3;

-— Returns the resultant difference of 2 vectors
function “-”

(V1, V2 : VECTOR_3) return VECTOR 3;

-- Returns the resultant dot product of 2 vectors
function DOT_PRODUCT

(Vi, v2 : VECTOR_3) return FLOAT;

function CROSS_PRODUCT
(Vi, V2 : VECTOR_3) return VECTOR_3;

—-- Length (result)} = length (v) * scale_ factor

196

function SCALE
(V : VECTCR_3;
SCALE_FACTOR : FLOAT) return VECTOR_3;

-- Returns a normalized vector
-— length (result) = 1.0
functicn NORMALIZE

(V : VECTOR_3) return VECTOR 3;

pragma INLINE (MAKE_POLAR VECTOR_3, LENGTH, THETA, PHI,
MAKE_CARTESIAN VECTOR_3, X COORDINATE, Y_ COORDINATE,
Z_COORDINATE, “+”, ™“-", DOT_PRODUCT, CROSS PRODUCT, SCALE,
NORMALIZE);

private
type VECTOR_3 is
record
X, Y, Z : FLOAT;
end record;

ZERO : constant VECTOR 3 := (0.0, 0.0, 0.0);

end VECTOR_3_PKG;

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

......................

function MAKE_POLAR_VECTOR_ 3
(LENGTH : FLOAT;
THETA : ANGLE;

197

PHI : AZIMUTH) return VECTOR 3 is

V : VECTOR_3;
R : FLOAT;

begin

R := LENGTH * COS (PHI);
v.X R * COS (THETA);
V.Y := R * SIN (THETA);
V.2 LENGTH * SIN (PHI);
return V;

|

i

end MAKE_POLAR_VECTOR_3;

function LENGTH
(V : VECTOR 3) return FLOAT is

R : FLOAT;

begin

R := SQRT (V.X * V.X + V.Y * V.Y);
return SQRT (R * R + V.2 * V.Z);

end LENGTH;

function THETA
(V. VECTOR_3) return ANGLE is

begin
return ARCTAN (V.Y / V.X);
end THETA;

function PHI

{ V : VECTOR 3) return AZIMUTH is
R : FLOAT;

198

begin

R := SQRT (V.X * V.X + V.Y * V.Y);
return AZIMUTH (ARCTAN (V.Z / R));

end PHI;

............................ MAKE_CARTESIAN VECTOR_3............cceuenan..
function MAKE_CARTESIAN VECTOR_3
(X, Y, Z : FLOAT) return VECTOR 3 is

V : VECTOR_3;

begin

V.X 1= X;
V.Y (= Y;
V.2 = Z;
return V;

end MAKE_CARTESIAN_VECTOR_3;

function X COORDINATE
(V : VECTOR 3) return FLOAT is

begin
return V.X;
end X_COORDINATE;

function Y_COORDINATE
(V : VECTOR_3) return FLOAT is

begin

return V.Y;
end Y_COORDINATE;

199

.......................

function Z_COORDINATE

(V : VECTOR_3) return FLOAT is

begin
return V.Z;
end Z_COORDINATE;

.......................

function “+”
(V1, V2 : VECTOR 3)

V : VECTOR_3;

begin

v.X = Vi.X + V2.X;
V.Y := V1.Y + V2.Y;
V.2 = V1.2 + V2.Z;

return V;

end \\+"’.

return VECTOR_3

1s

function “-”
(V1, v2 : VECTOR 3)

V : VECTOR_3;

begin

V.X := V1.X - V2.X;
V.Y := V1.Y - V2.Y;
V.2 := V1.2 - V2.2;

return V;

end “_n;

return VECTOR_3

200

function DOT_PRODUCT
(V1, V2 : VECTOR_3) return FLOAT is

begin

return V1.X * V2.X + V1.Y * V2.Y + V1.2 * V2.Z;
end DOT_PRODUCT;

................................

function CROSS_PRODUCT
VZ : VECTOR_3) return VECTOR 3 is

(vi,

V : VECTOR_3;

begin

V.X :=
V.Y :=
V.2 :=

return

V1.Y * v2.Z2 -~ V1.Z * v2.Y

vV1i.Z * V2.X - VI.X * V2.
V1. X * Vv2.Y - V1.Y * V2.

Vi

end CROSS_PRODUCT;

function SCALE
VECTOR_3;
SCALE_FACTOR : FLOAT) return VECTOR_3 1is

(v

V3 : VECTOR_3;

begin

-- length (result) = length
V3.X := V.X * SCALE_FACTCR;
V3.Y := V.Y * SCALE_FACTOR;
V3.2 := V.Z * SCALE_FACTOR;

return V3;

end SCALE;

(

v

)

* scale_factor

201

function NORMALIZE
(V : VECTOR_3) return VECTOR 3 is

R : FLOAT;

PHI : AZIMUTH;
THETA : ANGLE;
V3 : VECTOR_3;

begin

-- length (result) = 1.0

THETA := ARCTAN (V.Y / V.X);

R := SQRT (V.X * V.X + V.Y * V.Y);
PHI := AZIMUTH (ARCTAN (V.Z / R));
V3.2 := SIN (ANGLE (PHI));

R COS (ANGLE (PHI));

V3.Y := R * SIN (THETA);

V3.X := R * COS (THETA);

return V3;

end NORMALIZE;

..

end VECTOR_3_PKG;

APPENDIX I

SPEED PACKAGE

-— Authors : Richard T. Irwin
-- Willie K. Bolick

-— Date : 29 August 1991

-- Description : Defines data type SPEED and associated functions

with MATH;
use MATH;
package SPEED PKG is
subtype SPEED is FLOAT; -- Units : yards per second
-- Returns yards per second, given knots (nautical miles per hour)
functicn MAKE SPEED
(KNOTS : FLOAT) return SPEED;
-- Returns knots, given yards per second
function SPEED_IN_KNOTS

(S : SPEED) return FLOAT;

pragma INLINE
(MAKE_SPEED, SPEED_IN_KNOTS);

end SPEED_PKG;

203

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

package body SPEED_PKG is

YDS_IN_KNOT : constant FLOAT := £080.2 / 3.0;

SECONDS_IN HOUR : constant FLOAT := 3600.0;
............................... MAKE SPEEDt tutnreneanennenennennennnn
function MAKE_ SPEED

(KNOTS : FLOAT) return SPEED is

begin

return (KNOTS * YDS IN_KNOT) / SECONDS_IN_HOUR;

end MAKE SFPEED;

............................. SPEED IN KNOTS. ... uititinintat e,
function SPEED_IN_KNOTS

(S : SPEED) return FLOAT is

begin

return (S * SECONDS IN_HCUF) / YLE IN KNCT;

end SPEED_IN_KNOTS;

...... R

end SPEED_PKG;

204

APPENDIX]

ANGLE PACKAGE

-- Authors : Richard T. Irwin
-~ Willie K. Bolick

-- Date : 29 August 1991

(e}

-- Description 2fines data subtypes ANGLE, AZIMUTH, and associated

-- functions

with MATH;

use MATH;

package ANGLE_PKG is

subtype ANGLE 1is

FLOAT range -2.0 * PI .. 2.0 * PFI; ~-- Units of radians
subtype AZIMUTH is
ANGLE range -1.0 * PI .. PI; -- Units of radians

function DEGREES TO RADIANS (X : FLOAT) return ANGLE;

-~ Converts compass degree value tc its eguivalent radian value

function RADIANS TO_DEGREES (A : ANGLE) return FLOAT;

-- Converts radian value to its equivalent compass degree value

function SIN (A : ANGLE) return FLOAT renames MATH.SIN;
function COS (A : ANGLE) returr FLOAT renames MATH.COS;

205

function ARCTAN (A
function ARCSIN (A

ANGLE
ANGLE

pragma INLINE (
ARCTAN,

ARCSIN);

end ANGLE_PKG;

DEGREES_TO_RADIANS,

) return FLOAT renames MATH.ARCTAN;
) return FLOAT renames MATH.ARCSIN;

RADIANS TO_DEGREES,

-- Authors Richard T.
Willie K. Bolick

Irwin

-- Date 29 August 1991

SIN,

cos,

package body ANGLE PKG is

CONVERSION_FACTOR constant

.............................

function DEGREES_TO_RADIANS
begin

return ANGLE (X / CONVERSIO
end DEGREES_TO_RADIANS;

.............................

function RADIANS_TO_ DEGREES
F : FLOAT;

begin

F := FLOAT (A)
if F < 0.0 then
return 360.0 + F;
end if;

return F;

end
RADIANS TO_ DEGREES;

end ANGLE_PKG;

FLOAT := 180.0 / PI;

DEGREES_TO RADIANS......cvvvreeeenrnnnnnnn.

(X FLOAT) return ANGLE is

N_FACTOR) ;

RADIANS TO DEGREES

(A ANGLE) return FLOAT is

* CONVERSION_FACTOR;

206

.........................

APPENDIX K

ABSOLUTE TIME PACKAGE

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

..

-- Description : Defines abstract data type ABSOLUTE_TIME and associated
-- functions

with RELATIVE TIME PKG;

use RELATIVE TIME PKG;

package ABSOLUTE_TIME PKG is
type ABSOLUTE_TIME is private;

function NOW return ABSOLUTE TIME;
-- Converts CALENDAR.CLOCK time to ABSOLUTE_TIME

function MAKE_ABSOLUTE_TIME

(YEAR, MONTH, DAY : NATURAL;

TIME_OF_DAY : RELATIVE_TIME) return ABSOLUTE_TIME;

-— Accepts numerical values of year, month, day, and the time of day

-~ { represented in seconds). Ccnverts inputted values to ABSOLUTE TIME

function YEAR
(T : ABSOLUTE_TIME) return NATURAL;

207

-- Returns the value of the year contained in the ABSOLUTE_TIME input

function MONTH
(T : ABSOLUTE_TIME) return NATURAL;
-- Returns the value of the month contained in the ABSCLUTE_TIME input

function DAY
(T : ABSOLUTE_TIME) return NATURAL;
-- Returns the value of the day contained in the ABSOLUTE_TIME input

function TIME_OF_DAY

(T : ABSOLUTE_TIME) return RELATIVE TIME;

-—- Returns the value of the time of day (in seconds) contained in the
-— ABSOLUTE_TIME input

function “+”
{ ABT : ABSOLUTE_TIME;
RT : RELATIVE_TIME) return ABSOLUTE_TIME;

function “+”
(RT : RELATIVE TIME;
ABT : ABSOLUTE TIME) return ABSOLUTE TIME;

function “-”
(Tl1, T2 : ABSOLUTE_TIME) return RELATIVE_ TIME;

function “«“
(T1, T2 : ABSOLUTE_TIME) return BOOLEAN;

pragma INLINE
(MAKE _ABSOLUTE_TIME, YEAR, MONTH, DAY, TIME OF DAY);

private

type ABSOLUTE_TIME is
record

ABS_YEAR : NATURAL;
ABS_MONTH : NATURAL;
ABS DAY : NATURAL;
ABS HOUR : NATURAL;
ABS_MINUTE : NATURAL;

208

ABS_SECONDS : FLOAT;
end record;

BEGINNING : constant ABSOLUTE TIME := NOW;

end ABSOLUTE_TIME PKG;

—-- Authors : Richard T. Irwin
--— Willie K. Bolick
-- Date : 29 August 1991

with CALENDAR;

use CALENDAR;

package body ABSOLUTE_TIME PKG is

function NOW return ABSOLUTE_TIME is

ABT : ABSOLUTE_TIME;
SEC : DAY DURATION;

CT : TIME;

begin

CT := CLOCK; -- Get system time clock value now
SEC := SECONDS (CT); -- Convert time to seconds

ABT.ABS_YEAR := NATURAL (YEAR (CT));

ABT.ABS_MONTH := NATURAL (MONTH (CT));
ABT.ABS DAY := NATURAL (DAY (CT));
ABT.ABS HOUR := NATURAL (FLOAT (SEC)) / 3600;

ABT.ABS MINUTE := NATURAL (FLOAT (SEC) -

209

............

FLOAT (ABT.ABS HOUR * 3600)) / 60;
ABT.ABS_SECONDS := FLOAT (SEC) - FLOAT ((ABT.ABS_HOUR * 3600) +
(ABT.ABS_MINUTE * 60));

return ABT;

end NOW;

function MAKE_ABSOLUTE TIME
(YEAR, MONTH, DAY : NATURAL;
TIME OF DAY : RELATIVE TIME) return ABSOLUTE TIME is

ABT : ABSOLUTE_TIME;

begin

ABT.ABS YEAR := YEAR;

ABT.ABS MONTH := MONTH;

ABT.ABS DAY := DAY;

ABT.ABS HOUR := NATURAL (TIME OF DAY) / 3600;
ABT.ABS_MINUTE := (NATURAL (TIME OF DAY) -
ABT.ABS _HOUR * 3600) / 60;

ABT.ABS_ SECONDS := FLOAT (TIME_OF DAY) -
FLOAT ((ABT.ABS_HOUR * 3600) +

(ABT.ABS_MINUTE * 60));

return ABT;

end MAKE ABSOLUTE_TIME;

function YEAR
(T : ABSOLUTE~TIME) return NATURAL is

begin

return T.ABS_YEAR;
end YEAR;

210

function MONTH
(T : ABSOLUTE_TIME) return NATURAL is

begin

return T.ABS_MONTH;
end MONTH;

function DAY
(T : ABSOLUTE_TIME) return NATURAL is

begin

return T.ABS DAY;
end DAY;

function TIME OF DAY
(T : ABSOLUTE TIME) return RELATIVE_TIME is

RT : RELATIVE_TIME;
begin

RT := RELATIVE TIME (T.ABS_HOUR * 3600 + T.ABS_MINUTE * 60) +
RELATIVE TIME (T.ABS_SECONDS);

return RT;

end TIME_OF_DAY;

.................................

function “+”
{ ABT : ABSOLUTE‘TIME;
RT : RELATIVE TIME) return ABSOLUTE_TIME is

RABT : ABSOLUTE_TIME;
RTM : RELATIVE TIME;

211

T™ : TIME;

Y : YEAR NUMBER;

M : MONTH_NUMBER;
D : DAY NUMBER;

S : DAY DURATION;

begin

-- Use CALENDAR functions to get year, month, day of ABT

Y := YEAR NUMBER (ABT.ABS_YEAR);
M := MONTH NUMBER (ABT.ABS_MONTH);
D := DAY NUMBER (ABT.ABS_DAY);

-- Convert hours, minutes, seconds of ABT to seconds (RELATIVE TIME)
RTM := MAKE_RELATIVE_TIME (ABT.ABS_HOUR,

ABT.ABS_MINUTE,

ABT.ABS_SECONDS);

-- Convert RELATIVE_TIME type of RTM to DAY DURATION subtype,
-— then represent all values in terms of CALENDAR.TIME

S := DAY DURATION (RTM };

™ := TIME OF (¥, M, D, S);

-- Use CALENDAR “+” function to add input objects
T™ := CALENDAR.”+” (TM, DURATION (RT));

-- Extract necessary values to fill ABSOLUTE_TIME returned variable
:= YEAR (™™);

:= MONTH (™™);

:= DAY (TM);

:= SECONDS (TM);

n o X K

-- Fill ABSOLUTE_TIME returned variable
RABT.ABS_YEAR := NATURAL (Y);

RABT.ABS_MONTH := NATURAL (M);

RABT.ABS_DAY := NATURAL (D);

RABT.ABS_HOUR := HOURS (RELATIVE TIME (S });
RABT.ABS_MINUTE := MINUTES (RELATIVE TIME (S));
RABT.ABS_SECONDS := SECONDS (RELATIVE TIME (S } });

return RABT;

212

end \\+Il’.

..

function “+”
(RT : RELATIVE TIME;
ABT : ABSOLUTE TIME) return ABSOLUTE_TIME is

RABT : ABSOLUTE_TIME;
RTM : RELATIVE TIME;
T™ : TIME;

Y : YEAR NUMBER;

M MONTH_NUMBER;

D : DAY NUMBER;

S DAY DURATION;

begin

—-- Use CALENDAR functions to get year, month, day of ABT
Y := YEAR NUMBER (ABT.ABS_YEAR);

MONTH_NUMBER (ABT.ABS_MONTH) ;

DAY NUMBER (ABT.ABS_DAY);

v X
oo

~- Convert hours, minutes, seconds of ABT to seconds (RELATIVE TIME)
RTM := MAKE RELATIVE TIME (ABT.ABS_HOUR,
ABT.ABS_MINUTE,

ABT.ABS_SECONDS);

-- Convert RELATIVE TIME type of RTM to DAY DURATION subtype,
-- then represent all values in terms of CALENDAR.TIME

S := DAY DURATION (RTM);

™ := TIME OF (¥, M, D, S);

—-- Use CALENDAR “+” function to add input objects
T := CALENDAR.”+"” (TM, DURATION (RT) };

-- Extract necessary values to fill ABSOLUTE_TIME returned variable

Y := YEAR (T™);
M := MONTH (™ });
D := DAY (T™M);

213

S := SECONDS (TM);

-- Fill ABSOLUTE_TIME returned variable
RABT.ABS_YEAR := NATURAL (Y);

RABT.ABS MONTH := NATURAL (M);

RABT.ABS DAY := NATURAL (D);

RABT.ABS_HOUR := HOURS (RELATIVE TIME (S));
RABT.ABS_MINUTE := MINUTES (RELATIVE TIME (S));
RABT.ABS_SECONDS := SECONDS (RELATIVE TIME (S));

return RABT;

end \\+II;

function “-”
(T1, T2 : ABSOLUTE_TIME) return RELATIVE_TIME is

™1,

™2 : TIME;

DUR : DURATION;
Y1,

Y2 : YEAR NUMBER;
M1,

M2 : MONTH_ NUMBER;
D1,

D2 : DAY NUMBER;
si,

S2 : DAY DURATION;
RT1,

RT2 : RELATIVE_TIME;

begin

-— Use CALENDAR functions to get year, month, day of T1l, T2

Yl := YEAR_NUMBER (T1.ABS_YEAR);
Y2 := YEAR NUMBER (T2.ABS_YEAR);
M1 := MONTH_NUMBER (T1.ABS_MONTH);
M2 := MONTH_NUMBER (T2.ABS _MONTH);
D1 := DAY NUMBER (T1.ABS DAY);

214

D2 := DAY NUMBER (T2.ABS_DAY);

-—- Convert hours, minutes, seconds of Tl, T2 to seconds (RELATIVE TIME
)

RT1 := MAKE RELATIVE TIME (T1.ABS_HOUR,
T1.ABS_MINUTE,
T1.ABS_SECONDS) ;

RT2 := MAKE_RELATIVE_TIME (T2.ABS_ HOUR,

T2.ABS_MINUTE,
T2 .ABS_SECONDS);

—-- Convert RELATIVE_TIME types of Tl, T2 to DAY DURATION subtype,
-- then represent all values in terms of CALENDAR.TIME

S1 := DAY DURATION (RT1);

S2 := DAY DURATION (RT2);

TM1 := TIME OF (Y1, M1, D1, S1);

TM2 := TIME _OF (Y2, M2, D2, S2);

-— Use CALENDAR “-" function to subtract T2 equivalent from T1
equivalent
DUR := CALENDAR.”-" (TM1l, TM2);

return RELATIVE TIME (DUR);

end n_n;

function “«“
(T1, T2 : ABSOLUTE_TIME) return BOOLEAN is

T™1,
TM2 : TIME;

DUR : DURATION;
Y1,

Y2 : YEAR NUMBER;
M1,

M2 : MONTH_NUMBER;
D1,

D2 : DAY NUMBER;
s1,

S2 : DAY_DURATION;

215

RT1,
RT2 : RELATIVE TIME;

begin

-- Use CALENDAR functions to get year, month, day of Tl, T2

Y1 := YEAR_NUMBER (T1.ABS_YEAR);
Y2 := YEAR_NUMBER (T2.ABS_YEAR);
M1l := MONTH_NUMBER (T1.ABS_MONTH);
M2 := MONTH NUMBER (T2.ABS_MONTH);
D1 := DAY NUMBER (T1.ABS_DAY);

D2 := DAY NUMBER (T2.ABS_DAY);

-- Convert hours, minutes, seconds of Tl, T2 to seconds (RELATIVE TIME
)

RT1 := MAKE_RELATIVE TIME (T1.ABS_HOUR,
T1.ABS_MINUTE,
T1.ABS_SECONDS);

RT2 := MAKE_RELATIVE_TIME (T2.ABS_HOUR,

T2 .ABS_MINUTE,
T2 .ABS_SECONDS) ;

-— Ccnvert RELATIVE TIME types of Tl, T2 to DAY DURATION subtype,
-- then represent all values in terms of CALENDAR.TIME

S1 := DAY_DURATION (RT1);
S2 := DAY_DURATION (RT2);
TM1 := TIME_OF (Y1, M1, D1, S1);
T2 := TIME_OF (Y2, M2, D2, S2);

-- Use CALENDAR ™“<™“ function to compare T2 equivalent to Tl equivalent
return CALENDAR.”<™ (TM1l, TM2);

end \\<\\,.

..

end ABSOLUTE_TIME PKG;

216

APPENDIX L

DISTANCE PACKAGE

-— Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

-- Description : Defines data subtype DISTANCE and associated functions

package DISTANCE PKG is
subtype DISTANCE is FLOAT; -- Units : yards

-- Larger than any observable range.
UNLIMITED : constant DISTANCE := FLOAT’LAST;

-- Unknown altitude.
UNKNOWN : constant DISTANCE := - UNLIMITED;

-- Converts nautical miles to yards
function MAKE NAUTICAL MILES DISTANCE
(NM : FLOAT) return DISTANCE;

—-— Converts yards to nautical miles
function DISTANCE_IN NAUTICAL MILES

(D : DISTANCE) return FLOAT;

pragma INLINE
(MAKE NAUTICAL MILES DISTANCE,

217

DISTANCE_IN NAUTICAL_ MILES);

end DISTANCE PKG;

-- Authors : Richard T. Irwin
-~ Willie K. Bolick

-~ Date : 29 August 1991

package body DISTANCE PKG is

YDS_IN_NAUTICAL MILE : constant FLOAT := 6080.2 / 3.0;

........................... MAKE NAUTICAL MILES DISTANCE.................
function MAKE_NAUTICAL_MILES DISTANCE

(NM : FLOAT) return DISTANCE is

begin

return NM * ¥YDS_IN NAUTICAL_ MILE;

end MAKE_NAUTICAL MILES DISTANCE;

........................... DISTANCE_IN NAUTICAL MILES...........cocou....
function DISTANCE_IN NAUTICAL MILES '
(D : DISTANCE) return FLOAT is
begin
return D / YDS_IN_NAUTICAL MILE;
end DISTANCE_IN_NAUTICAL MILES;

...

end DISTANCE PKG;

218

APPENDIX M

GLOBAL OBSERVATION PACKAGE

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

~-- Description : Defines data type GLOBAL_OBSERVATION

with GLOBAL_POSITION_PKG, VELOCITY PKG, ABSOLUTE_TIME PKG;
use GLOBAL_POSITION_PKG, VELOCITY PKG, ABSOLUTE_ TIME_ PKG;
package GLOBAL_OBSERVATION_PKG is

type GLOBAL OBSERVATION is
record

POSITION : GLOBAL POSITION;
COURSE_AND_SPEED : VELOCITY;
OBSERVATION_TIME : ABSOLUTE TIME;
end record;

end GLOBAL_OBSERVATION_ PKG;

219

APPENDIX N

GLOBAL POSITION PACKAGE

-~ Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

-— Description : Defines abstract data type GLOBAL_POSITION and
associated

-- functions/procedures

with RELATIVE POSITION_PKG, ANGLE PKG, DISTANCE_PKG;
use RELATIVE POSITION_PKG, ANGLE_ PKG, DISTANCE_ PKG;
package GLOBAL POSITION_PKG is

type GLOBAL POSITION is private; -- Earth coordinates.
type NORTH_SOUTH is {(N, S);-- Specifies latitude hemispere
type EAST WEST is (E, W });-- Specifies longitude hemisphere

-— Converts lat/long degrees, minutes, seconds to GLOBAL POSITION
function MAKE_GLOBAL_POSITION

(LATITUDE_DIRECTION : NORTH_SOUTH;

LATITUDE DEGREES : NATURAL;

LATITUDE MINUTES : NATURAL;

LATITUDE_SECONDS : NATURAL;

LONGITUDE_DIRECTION : EAST_WEST;

LONGITUDE_DEGREES : NATURAL;

220

LONGITUDE MINUTES : NATURAL;
LONGITUDE SECONDS : NATURAL) return GLOBAL_POSITION;

-- Finds bearing & range (RELATIVE _POSITION) from 1 earth coordinate
to

-- another

function FIND RELATIVE POSITION

(CONTACT,
REFERENCE POINT : GLOBAL_POSITION) return RELATIVE_POSITION;

-- Returns an earth coordinate, given 1 earth coordinate and a bearing &
range

-— (RELATIVE POSITION)

function FIND_GLOBAL_POSITION

(OFFSET : RELATIVE POSITION;

REFERENCE_POINT : GLOBAL_POSITION) return GLOBAL_POSITION;

-- Returns length of the great circle path from pl to p2
function GREAT_CIRCLE_DISTANCE

(P1,

P2 : GLOBAL_POSITION) return DISTANCE;

~- Returns true bearing at position pl of the great circle path from pl
to p2

function GREAT_ CIRCLE_BEARING

(P1,

P2 : GLOBAL POSITICN) return ANGLE;

-- Returns latitude (in familiar terms, degrees, minutes, seconds) of
a

-- given GLOBAL_POSITION

procedure GET_ LATITUDE

(POSITION : in GLOBAL_ POSITION;

DIRECTION : out NORTH_SOUTH;

DEGREES : out NATURAL;

MINUTES : out NATURAL;

SECONDS : out NATURAL);

-- Returns longitude (in familiar terms, degrees, minutes, seconds) of
a
-- given GLOBAL_ POSITION

procedure GET_LONGITUDE

221

(POSITION : in GLOBAL_POSITION;
DIRECTION : out EAST WEST;
DEGREES : out NATURAL;

MINUTES : out NATURAL;

SECONDS : out NATURAL);

pragma INLINE (MAKE GLOBAL POSITION, FIND_RELATIVE_POSITION,
FIND_GLOBAL POSITION, GREAT CIRCLE_DISTANCE,
GREAT_CIRCLE_BEARING, GET LATITUDE, GET LONGITUDE);

private

type GLOBAL POSITION is

record

THETA : ANGLE; -- Longitude angle in radians, -2pi to 2pi
-- 0.0 = Greenwich Meridian

-- 0.0 to 2pi = East longitude

PHI : AZIMUTH; -- Latitude angle in radians, -pi to pi
-- 0.0 = equator
-- 0.0 to pi = North latitude

end record;

end GLOBAL_ POSITION_ PKG;

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-— Date : 29 August 1991

with MATH, VECTOR 2 PKG;

use VECTOR_2 PKG;

package body GLOBAL POSITION_PKG is

222

function MAKE_GLOBAL_POSITION

(LATITUDE_DIRECTION : NORTH_SOUTH;

LATITUDE DEGREES : NATURAL;

LATITUDE_MINUTES : NATURAL;

LATITUDE_SECONDS : NATURAL;

LONGITUDE_DIRECTION : EAST WEST;

LONGITUDE_DEGREES : NATURAL;

LONGITUDE_MINUTES : NATURAL;

LONGITUDE_SECONDS : NATURAL) return GLOBAL_POSITION is

LAT DEG,
LONG_DEG : FLOAT;
GP : GLOBAL_POSITION;

begin

-- Convert latitude, longitude to seconds

LAT DEG := FLOAT (LATITUDE_DEGREES * 3600 + LATITUDE_ MINUTES * 60 +
LATITUDE_SECONDS);

LONG_DEG := FLOAT (LONGITUDE_DEGREES * 3600 + LONGITUDE MINUTES * 60 +
LONGITUDE_SECONDS);

-- Convert longitude seconds to radians (0..PI = east, -PI..0 = west)
GP.THETA := ANGLE (LONG _DEG / 3600.0 * MATH.PI / 180.0);

if LONGITUDE DIRECTION = W then
GP.THETA := -GP.THETA;
end if;

-- Convert latitude seconds to radians (0..PI/2 = north, -PI/2..0 =
south)

GP.PHI := AZIMUTH (LAT DEG / 3600.0 * MATH.PI / 180.0);
if LATITUDE DIRECTION = $ then
GP.PHI := —-GP.PHI;

end if;

return GP;

223

end MAKE GLOBAL_POSITION;

function FIND RELATIVE_POSITION
(CONTACT,
REFERENCE POINT : GLOBAL_POSITION) return RELATIVE POSITION is

DELTA_LAT_IN_NM,

DELTA_LONG_IN_NM : FLOAT; -- In nautical miles
DELTA_ LAT_IN RADIANS : AZIMUTH; -- In radians
DELTA LONG_IN RADIANS : ANGLE; -- In radians

CTC_REL_POS . RELATIVE_POSITION;

begin

—-— Compute change in latitude (radians)
DELTA_LAT_IN_ RADIANS := CONTACT.PHI - REFERENCE POINT.PHI;

--If E / W hemisphere change over International Date Line
if (CONTACT.THETA * REFERENCE POINT.THETA < 0.0) and
{ ABS (CONTACT.THETA - REFERENCE POINT.THETA)) > MATH.PI then

-- If going East to West

if REFERENCE POINT.THETA > 0.0 then

DELTA_LONG_IN_RADIANS := MATH.PI * 2.0 - (REFERENCE POINT.THETA -
CONTACT.THETA };

-- If going West to East

else

DELTA_LONG_IN_RADIANS := - MATH.PI * 2.0 - (REFERENCE_POINT.THETA -
CONTACT.THETA);

end if;

-— No change in E / W hemispheres

else

DELTA_LONG_IN_RADIANS := CONTACT.THETA - REFERENCE_POINT.THETA;
end if;

-- Convert lat/long change to nautical miles

-- 1 degree ! in radians) of change = 60 miles
DELTA_LAT_IN_NM := DELTA LAT IN RADIANS * 180.0 / MATH.PI * 60.0;

224

DELTA_LONG_IN NM := DELTA_ LONG_IN_RADIANS * 180.0 / MATH.PI * 60.0;

-- Convert the changes in lat/long to DISTANCE {(yards)
-- then initialize the RELATIVE POSITION (2-D vector)
CTC_REL_POS := MAKE_CARTESIAN VECTOR_2
(FLOAT (MAKE NAUTICAL MILES_DISTANCE
(DELTA_LONG_IN NM)),
FLOAT (MAKE NAUTICAL MILES_DISTANCE
(DELTA_LAT IN NM)));

return CTC_REL_POS;

end FIND_RELATIVE POSITION;

function FIND GLOBAL_POSITION
(OFFSET : RELATIVE_ POSITION;
REFERENCE_POINT : GLOBAL_POSITION) return GLOBAL_POSITION is

DELTA_LAT_IN_NM,

DELTA_LONG_IN_NM : FLOAT; -- in nautical miles
DELTA_LAT IN_RADIANS : AZIMUTH; -- in radians
DELTA_LONG_IN_RADIANS : ANGLE; -- in radians

CTC_POSITION : GLOBAL_PCSITION;
begin

-- Get changes in lat/long & convert to nautical miles

DELTA_LAT_IN_NM := DISTANCE_ IN NAUTICAL MILES (Y_COORDINATE (OFFSET)
)i

DELTA_LONG_IN NM := DISTANCE_ IN NAUTICAL_MILES (X COORDINATE (OFFSET
))i

-- Convert NM to radians
DELTA_LAT_IN_RADIANS := AZIMUTH (DEGREES_TO_RADIANS
(DELTA_LAT_IN NM / 60.0));

DELTA_LONG_IN_RADIANS := DEGREES_TO_RADIANS (DELTA_LONG_IN NM / 60.0
)i

-- If the target lies on the other side of the pole, don’t
-—- make the resultant latitude > 90 degrees

225

if ABS (REFERENCE POINT.PHI + DELTA LAT IN_RADIANS) > MATH.PI / 2.0
then

~-- If going over the south pole

if DELTA_LAT IN_RADIANS < 0.0 then

CTC_POSITION.PHI := - MATH.PI - (REFERENCE_POINT.PHI +
DELTA_LAT IN_RADIANS);

~— Going over the north pole

else

CTC_POSITION.PHI := MATH.PI - (REFERENCE POINT.PHI +
DELTA_LAT IN_RADIANS);

end if;

~- If we cross the n/s pole, we also change e/w hemispheres
DELTA_LONG_IN_RADIANS := DELTA LONG_IN_RADIANS + MATH.PI;

~- Not going over the n/s pole

else

—-- Assign target’s latitude (in radians)

CTC_POSITION.PHI := REFERENCE_PCINT.PHI + DELTA LAT IN RADIANS;

end if;

-- If target lies in other e/w hemisphere
if ABS (REFERENCE POINT.THETA + DELTA LONG_IN RADIANS) > MATH.PI then

-— Target is in western hemisphere

if DELTA_LONG_IN_RADIANS < 0.0 then

DELTA_LONG_IN RADIANS := DELTA LONG_IN RADIANS + MATH.PI * 2.0;
-- Target 1is in eastern hemisphere

else

DELTA_LONG_IN RADIANS := DELTA_LONG_IN RADIANS - MATH.PI * 2.0;
end if;

end if;

-- Assign target’s longitude
CTC_POSITION.THETA := REFERENCE POINT.THETA + DELTA_ LONG_IN_RADIANS;

return CTC_POSITION;

226

end FIND GLOBAL_POSITION;

.............................. GREAT _CIRCLE_DISTANCE
function GREAT_CIRCLE_DISTANCE

(P1,

P2 : GLOBAL POSITION) return DISTANCE is

CTC_RG_BRG : RELATIVE POSITION;

begin

.....................

-- Find where P2 is in relation to Pl (bearing & range)

CTC_RG_BRG := FIND_RELATIVE POSITION (P1l, P2);

-- Return only the range (great circle)}
return RANGE_OF (CTC_RG_BRG);

end GREAT CIRCLE_DISTANCE;
S GREAT_CIRCLE_BEARIN
function GREAT_ CIRCLE_BEARING
(P1l, -- From
P2 -- To
GLOBAL_POSITION) return ANGLE is

CTC_RG_BRG : RELATIVE POSITION;

begin

-- Find where P2 is in relation to Pl (bearing & range)

CTC_RG_BRG := FIND_RELATIVE_POSITION (P1l, P2);

-— Return only the bearing (great circle)
return BEARING_TO (CTC_RG_BRG);

end GREAT CIRCLE_BEARING;

227

procedure GET_ LATITUDE

(POSITION : in GLOBAL POSITION;
DIRECTION : out NORTH_SOUTH;
DEGREES : out NATURAL;

MINUTES : out NATURAL;

SECONDS : out NATURAL) is

PH : AZIMUTH

DEG : NATURAL;
MIN : NATURAL;
SEC : NATURAL;

POSITION.PHI;

begin

—-- If the value of target’s PHI < 0.0, it’s in the southern hemisphere
if PH < 0.0 then

DIRECTION := S;

PH := -PH;

else

DIRECTION := N;

end if;

—— Convert latitude (radians) to seconds
SEC := NATURAL (FLOAT (PH) * 180.0 / MATH.PI * 3600.0);

-- Calculate degrees, minutes, seconds

DEG := SEC / 3600;

MIN := (SEC - DEG * 3600) / 60;
SEC := SEC - DEG * 3600 - MIN * 60;
DEGREES := DEG;

MINUTES := MIN;

SECONDS := SEC;

end GET_LATITUDE;

procedure GET_LONGITUDE
{ POSITION : in GLOBAL POSITION;

228

DIRECTION : out EAST WEST;
DEGREES : out NATURAL;
MINUTES : out NATURAL;
SECONDS : out NATURAL) is

TH : ANGLE := POSITION.THETA;
DEG : NATURAL;
MIN : NATURAL;
SEC : NATURAL;

begin

-- If the value of target’s THETA < 0.0, it’s in the western hemisphere
if TH < 0.0 then

DIRECTION := W;
TH := -TH;

else

DIRECTION := E;
end if;

~- Convert longitude (radians) to seconds
SEC := NATURAL (FLOAT (TH) * 180.0 / MATH.PI * 3600.0);

-- Calculate degrees, minutes, seconds
DEG := SEC / 3600;

MIN := (SEC - DEG * 3600) / 60;
SEC := SEC - DEG * 3600 - MIN * 60;
DEGREES := DEG;

MINUTES := MIN;

SECONDS := SEC;

end GET_LONGITUDE;

...

end GLOBAL_POSITION_PKG;

229

APPENDIX O

RELATIVE OBSERVATION PACKAGE

-- Authors : Richard T. Irwin
-- Willie K. Bolick

—-- Date : 29 August 1991

..

-- Description : Defines data type RELATIVE OBSERVATION

with RELATIVE POSITION PKG, CALENDAR;
use RELATIVE_POSITION_PKG, CALENDAR;
package RELATIVE OBSERVATION PKG is
type RELATIVE_OBSERVATION is

record

POSITION : RELATIVE_POSITION;
OBSERVATION__TIME . TIME;

end record;

end RELATIVE_OBSERVAT:ON_ PKG;

230

APPENDIX P

RELATIVE POSITION PACKAGE

—-— Authors : Richard T. Irwin
-- Willie K. Bolick

-~ Date : 29 August 1991

..

-- Description : Defines data type RELATIVE POSITION and associated
functions

with VECTOR_2 PKG, DISTANCE_PKG, ANGLE PKG;
use VECTOR_2 PKG, DISTANCE PKG, ANGLE_PKG;
package RELATIVE POSITIUN PKG is

subtype RELATIVE POSITION is VECTOR 2; -- Two dimensional position
vector.

-- Returns the distance portion of a 2-D RELATIVE_POSITION vector
function RANGE OF
(CONTACT : RELATIVE_POSITION) return DISTANCE

renames VECTOR_2_PKG.LENGTH;

-- Returns the bearing portion of a 2-D RELATIVE POSITION vector
function BEARING_TO
(CONTACT : RELATIVE POSITION) return ANGLE

renames VECTOR_2_ PKG.DIRECTION;

pragma INLINE (RANGE_OF, BEARING TO);

end RELATIVE POSITION_ PKG;

231

APPENDIX Q

TRACK DATABASE PACKAGE

-- Authors : Richard T. Irwin
-—- Willie K. Bolick

-- Date : 29 August 1991

—- Description : Defines abstract data type TRACK_DATABASE and
associated

-- functions and procedures

with TRACK_PKG;
use TRACK_PKG;
package TRACK_DATABASE_PKG is
type TRACK_DATABASE is private;
-—- Determines whether or not a TRACK is active
function ACTIVE TRACK
{ DBASE : TRACK_DATABASE) return BOOLEAN;
-- Restores active TRACK to database before new one is activated
procedure RESTORE_ALTERED_TRACK_TO_DATABASE
(TRAK : in TRACK;
DBASE : in out TRACK DATABASE);
-- Finds a TRACK in the database by track number

procedure FIND_TRACK_IN_DBASE
(TRAK_NUM : in NATURAL;

232

TRAK : in out TRACK;
DBASE : in out TRACK_DATABASE);

-- Adds a new TRACK to the database
procedure ADD_TRACK TC DBASE

(TRAK : in TRACK;

DBASE : in out TRACK _DATABASE);

-- TRACKS object & all associated observations of that TRACK
~- are purged. Only the currently active TRACK can be deleted.
procedure DROP_TRACK FROM DBASE

(DBASE : in out TRACK DATABASE);

~- Drops all TRACKS froum iiie database and sends them to history

~- Should be automatically invoked upon termination of main program
procedure PURGE_ENTIRE_DBASE

(DBASE : in out TRACK_DATABASE);

pragma INLINE (ACTIVE_ TKACK, RESTORE_ALTERED_TRACK_TO DATABASE,
FIND_TRACK_IN_DBASE, ADD_TRACK_TO_DBASE,
DROP_TRACK_FROM_ DBASE, PURGE ENTIRE_DBASE);
private
type TRACK_NODE;-- Elements of the TRACK DATABASE
type TRACK_PTR is access TRACK NODE;
type TRACK NODE is
record
TRAK : TRACK;
NEXT TRACK : TRACK PTR;

end record;

type TRACK DATABASE is

record

OWNSHIP_POSITION : TRACK PTR; -- Points to OWNSHIP TRACK
CURRENT_TRACK_POSITION : TRACK _PTR; -- Points to currently active TRACK
PRIOR_TRACK_POSITION : TRACK PTR; -- Points to TRACK before active

-- TRACK for relink purposes after
-- active TRACK is deleted

233

end record;

end TRACK DATABASE PKG;

-- Authcrs : Richard T. Irwin
-- Willie K. Bolick

—-- Date : 29 August 1991

with UNCHECKED_ DEALLOCATION;
package body TRACK _DATABASE PKG is

procedure FREE_TRK is
new UNCHECKED DEALLOCATION (TRACK_NODE, TRACK_PTR);

function ACTIVE TRACK
(DBASE : TRACK DATABASE) return BOOLEAN is

begin

if DBASE.CURRENT_TRACK POSITION = null then
return FALSE;

end if;

return TRUE;

end ACTIVE_ TRACK;

........................ RESTORE_ALTERED TRACK TO DATABASE...............
procedure RESTORE_ALTERED TRACK TO_ DATABASE

(TRAK : in TRACK; -- altered TRACK

DBASE : in out TRACK DATABASE) is

234

begin

-- If currently active TRACK was not deleted
if ACTIVE_TRACK (DBASE) then

-- Restore currently active TRACK
DBASE.CURRENT_TRACK POSITION.TRAK := TRAK;

—— Restore OWNSHIP TRACK, if necessary

if DBASE.CURRENT_TRACK POSITION = DBASE .OWNSHIP_POSITION then
DBASE .OWNSHIP POSITION.TRAK := TRAK;

end if;

end if;

end RESTORE_ALTERED TRACK _TO_ DATABASE;

procedure FIND_TRACK_IN_DBASE

(TRAK_NUM : in NATURAL;

TRAK : in out TRACK;

DBASE : in out TRACK DATABASE) is

begin

-- Restore currently active TRACK before reassigning current pointer
RESTORE_ALTERED_TRACK TO DATABASE (TRAK, DBASE);

if TRAK_NUM /= 0 then-- not OWNSHIP

DBASE .CURRENT_TRACK_POSITION := DBASE.OWNSHIP_POSITION.NEXT TRACK;
DBASE.PRIOR_TRACK_POSITION := DBASE.OWNSHIP_POSITION;

while (DBASE.CURRENT_TRACK_POSITION /= null) and then

(TRACK_ID_NUMBER (DBASE.CURRENT TRACK POSITION.TRAK) >
TRAK_NUM) loop

DBASE.PRIOR_TRACK_POSITION := DBASE.CURRENT_TRACK_POSITION;

DBASE.CURRENT TRACK POSITION :=
DBASE.CURRENT_TRACK_POSITION.NEXT TRACK;

235

end loop;

else

DBASE.CURRENT_TRACK_POSITION := DBASE.OWNSHIP_POSITION;
DBASE.PRIOR_TRACK POSITION := null;

end if;

-- If TRACK found, return it
if DBASE.CURRENT TRACK POSITION /= null) and then

(TRACK_ID NUMBER (DBASE.CURRENT TRACK_POSITION.TRAK) = TRAK NUM)
then

TRAK := DBASE.CURRENT_TRACK_POSITION.TRAK;

else -- TRACK not found

DBASE.CURRENT_TRACK POSITION := null;

end if;

end FIND_TRACK_ IN_ DBASE;

procedure ADD_TRACK TO DBASE
{ TRAK : in TRACK;
DBASE : in out TRACK_DATABASE) is

T P : TRACK_PTR;

begin
T P := new TRACK NODE;
T_P.TRAK := TRAK;

if DBASE.OWNSHIP_POSITION = null then

-- first track entered (OWNSHIP)
DBASE .OWNSHIP_POSITION := T P;

DBASE .PRIOR_TRACK_POSITION := T P;

else

236

-— All new TRACKs are entered in the TRACK_DATABASE linked 1list
-- immediately following OWNSHIP

T P.NEXT_TRACK := DBASE.OWNSHIP_POSITION.NEXT_TRACK;

DBASE .OWNSHIP_ POSITION.NEXT TRACK := T _P;

DBASE.PRIOR_TRACK POSITION := DBASE.OWNSHIP_ POSITION;

end if;

DBASE.CURRENT TRACK _POSITION := T_P;

end ADD_TRACK_TO_DBASE;

........................... DROP_TRACK FROM DBASE.......e0uernennennannnn
procedure DROP_TRACK FROM_DBASE

(DBASE : in out TRACK_DATABASE) is

TR : TRACK := DBASE.CURRENT TRACK POSITION.TRAK;

begin

-—- OWNSHIP cannot be dropped
if DBASE.CURRENT_TRACK_POSITION /= DBASE.OWNSHIP POSITION then

-- Send TRACK data & all its observations to archive file
DELETE_TRACK_AND_SEND_TO_HISTORY (TR);

DBASE.PRIOR_TRACK POSITION.NEXT TRACK :=
DBASE .CURRENT TRACK POSITION.NEXT TRACK;

-- Free deleted TRACK’s memory space
FREE_TRK (DBASE.CURRENT TRACK POSITION);

end if;

end DROP_TRACK FROM DBASE;

procedure PURGE_ENTIRE DBASE
{ DBASE : in out TRACK DATABASE) is

OP : TRACK PTR := DBASE.OWNSHIP_POSITION;
Cp, PP : TRACK_PTR;
TRAK : TRACK := OP.TRAK;

begin

-- Send OWNSHIP data & all its observations to archive file
DELETE_TRACK AND_SEND_TO HISTORY (TRAK);

-- Get next TRACK in database
CP := OP.NEXT_TRACK;

-- Delete TRACKs, send data to archives, and free up memory for all
-— TRACKs in the database

while CP /= null loop

TRAK := CP.TRAK;

DELETE_TRACK_AND SEND_TO_HISTORY (TRAK);

PP := CP.NEXT_ TRACK;

FREE_TRK (CP);

CpP := PP;

end loop;

FREE_TRK (OP);
DBASE.OWNSHIP_POSITION := null;
DBASE.CURRENT TRACK POSITION := null;

DBASE.PRIOR_TRACK _POSITION := null;

end PURGE_ENTIRE_DBASE;

..

end TRACK DATABASE PKG;

238

APPENDIX R

LINK PACKAGE

-—- Authors : Richard T. Irwin
-- Willie K. Bolick

-— Date : 29 August 1991

..

-- Description : Defines abstract data type LINK_TYPE and associated
-- functions and procedures

with TRACK_PKG, GLOBAL_POSITION PKG, INTEGRATION SYSTEM PKG,
RELATIVE_TIME PKG, M SERIES MSG_PKG;

use TRACK_PKG, GLOBAL_POSITION PKG, INTEGRATION_ SYSTEM PKG,
RELATIVE TIME PKG, M_SERIES MSG_PKG;

package LINK PKG is

TIME_OUT _DURATION : constant RELATIVE TIME := 3600.0; --<<<<----- +
-— LINK_TRACK times out after 1 hour of no updates |
-- Actual value may differ once implemented ------~----—-—--mo-—-—— +

type LINK_TYPE is private;

type LINK_TABLE;

type LINK PTR is access LINK_TABLE;
type LINK TABLE is

record

LINK_NUM : NATURAL; -- link assigned

239

TRK_NUM : NATURAL := 0; -- system assigned
CTL : CONTROL_TYPE; -- LINK, LOCAL
NEXT_LT : LINK_PTR;

end record;

-- Extracts & formats a link M series message to a LINK_TYPE that
-- is later transformed into a TRACK

function CONVERT M_SERIES_MSG_TO_LINK TYPE

(MSG : M_SERIES MSG) return LINK_TYPE;

-- Creates a TRACK under LINK control from a LINK_TYPE
procedure CREATE_LINK TRACK

(LT : in LINK_TYPE;

L_TBL : in out LINK PTR;

TRK : in out TRACK);

~— Adds a new observation to an existing LINK TRACK
procedure ADD_LINK OBSERVATION

(LT : in LINK_TYPE;

TRK : in out TRACK);

-- All tracks reported over link are relative to DLRP
-- (Data Link Reference Point)

procedure MAKE DLRP_TRACK

(DLRP : in GLOBAL_POSITION;

TRK : in out TRACK);

procedure FIND_LINK_TYPE_IN_TABLE BY LINK_NUM
(LN : in NATURAL;-- link table number

LP : in LINK PTR;

LT : out LINK_TYPE);

procedure FIND_LINK TYPE_IN TABLE BY TRK_NUM

(TN : in NATURAL;-- system assigned track number
LP : in LINK_PTR;

LT : out LINK_TYPE);

-- Updates LINK TABLE to reflect LOCAL control so no more link
-—- updates to that track will occur

procedure CHANGE_LINK_TRACK_TO_LOCAL TRACK

(TN : in NATURAL);

240

-- Visits each node in LINK_TABLE

-~ Calls TIME _OUT to see if outside acceptable update time

-- If no update within specified period, assume link has dropped it &
-- call DROP_LINK_TRACK_AFTER_TIME_OUT

procedure SCAN_LINK_TABLE FOR_TIME OUTS

(LP : in out LINK PTR);

—- Deletes LINK TABLE entry after timeout

-- Makes call to INTEGRATION_SYSTEM to drop TRACK, if not under LOCAL
control

procedure DROP_LINK TRACK_AFTER_TIME OUT
{ LP : in out LINK_PTR;
TRK_NUM : out NATURAL);

-- Checks LINK_TABLE to see if LINK TYPE is under LOCAL control
function ASSIGNED_LOCAL_CONTROL

(LT : LINK_TYPE;

LP : LINK PTR)} return BOOLEAN;

-- Calls FIND LINK_TYPE_IN TABLE_ BY LINK NUM

-- Flags system to drop link track after no updates in pre-assigned
-- time period

function TIME_OUT

{ LN : NATURAL) return BOOLEAN;

pragma INLINE (CONVERT_M_SERIES_MSG_TO_LINK_TYPE, CREATE_LINK_ TRACK,
ADD_LINK_OBSERVATION, MAKE DLRP TRACK,
FIND _LINK_TYPE_IN_TABLE_BY LINK NUM,
FIND_LINK_TYPE_IN_TABLE_BY TRK_NUM,
CHANGE_LINK_TRACK_TO_LOCAL_TRACK,
SCAN_LINK_TABLE_FOR TIME OUTS, DROP_LINK_TRACK AFTER TIME OUT,
ASSIGNED_LOCAL_CONTROL, TIME OUT);

private

type LINK _TYPE is

record

LINK NUM : NATURAL;

REL_POS_FM_DLRP : RELATIVE POSITION;
TIME _OF OBS : ABSOLUTE_TIME;

24]

TRK_CAT : TRACK_CATEGORY;
TRK_ID : IDENTITY TYPE;
ALTITUDE : DISTANCE := 0.0;
end record;

end LINK PKG;

242

APPENDIX S

SYSTEM STATUS PACKAGE

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

..

—-- Description : Defines abstract data type SYSTEM STATUS and associated
-- functions and procedures

package SYSTEM_STAT'IS_PKG is

type STATUS is (UP, DOWN);
type SENSOR is (LINK, GPS, RADAR, PITSWORD, GYRO, FATHOMETER);
type SYSTEM STATUS is private;

~-- Retrieves status of a particular sensor
function GET_STATUS

(SYS_STATUS : SYSTEM_STATUS;

SENSER : SENSOR) return STATUS;

-- Sets the status of a particular sensor
procedure SET_ STATUS

(SYS_STATUS : out SYSTEM STATUS;

SENSER : in SENSOR;

UP_DOWN : in STATUS);

pragma INLINE (GET_STATUS, SET_STATUS);

243

private

type SYSTEM_STATUS is

record

LINK_STATUS : STATUS := DOWN;
GPS_STATUS : STATUS := DOWN;

RADAR STATUS : STATUS := DOWN;
PITSWORD_STATUS : STATUS := DOWN;
GYRO_STATUS : STATUS := DOWN;
FATHOMETER_STATUS : STATUS := DOWN;
end record;

end SYSTEM STATUS_PKG;

-—- Authors : Richard T. Irwin
-- Willie K. Bolick

-—- Date : 29 August 1991

function GET_STATUS
(SYS_STATUS : SYSTEM_STATUS;
SENSER : SENSOR) return STATUS is

begin

case SENSER is

when LINK =>

return SYS_STATUS.LINK STATUS;
when GPS =>

return SYS_STATUS.GPS_STATUS;
when RADAR =>

return SYS_STATUS.RADAR_STATUS;
when PITSWORD =>

244

return SYS_STATUS.PITSWORD_STATUS;
when GYRO =>

return SYS STATUS.GYRO_STATUS;

when FATHOMETER =>

return SYS_STATUS.FATHOMETER_ STATUS;
end case;

end GET_STATUS;

procedure SET_STATUS

(SYS_STATUS : out SYSTEM STATUS;
SENSER : in SENSOR;

UP_DOWN : in STATUS) is

begin

case SENSER is
when LINK =>

SYS_STATUS.LINK_STATUS := UP_DOWN;
when GPS =>
SYS_STATUS.GPS_STATUS := UP_DOWN;

when RADAR =>
SYS_STATUS .RADAR STATUS
when PITSWCORD =>
SYS_STATUS.PITSWORD_STATUS := UP_DOWN;
when GYRO =>

SYS_STATUS.GYRO_STATUS := UP_DOWN;

when FATHOMETER =>

SYS_STATUS .FATHOMETER_STATUS := UP_DOWN;
end case;

[

UP_DOWN;

end SET_STATUS;

end SYSTEM_STATUS PKG;

245

APPENDIX T

NAVIGATION PACKAGE

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

..

-—- Description : Defines function GET GPS_UPDATE

with GLOBAL_OBSERVATION PKG, TEXT_ IO, GLOBAL POSITION PKG,
ABSOLUTE_TIME_PKG, VECTOR 2 PKG;

use GLOBAL_OBSERVATION_PKG, TEXT_I0, GLOBAL_POSITION PKG,
ABSOLUTE_TIME_PKG, VECTOR 2 PKG;

package NAVIGATION PKG is

-- Returns current OWNSHIP’s position from GPS
function GET_GPS_UPDATE return GLOBAL_OBSERVATION;

pragma INLINE (GET_GPS_UPDATE);
end NAVIGATION_PKG;
package body NAVIGATION PKG is
function GET_GPS_UPDATE return GLOBAL OBSERVATICN is

CHAR : CHARACTER;

246

THE_FILE : FILE_TYPE;

IN_STRING : BOOLEAN := FALSE; -- Start character ‘[‘' found,
-- reading position data

LAT _DEG, -~ Degrees of latitude

LONG_DEG, -~ Degrees of longitude

LAT_MIN, -- Minutes of latitude

LONG_MIN, —- Minutes of lcngitude

LAT_SEC, -- Seconds of latitude

LONG_SEC : NATURAL;-- Seconds of longitude

LAT_MIN_FL,-- GPS output of latitude minutes

LONG_MIN_FL : FLOAT;-- GPS output of longitude minutes

LAT DIR : NORTH_SOUTH;-- North/South latitude

LONG_DIR : EAST_WEST;-- East/West longitude

OWN_OBS : GLOBAL_ OBSERVATION; -- Returned position after conversion

package NATURAL_INOUT is new INTEGER_IO (NATURAL);
package FLOAT_INOUT is new FLOAT IO (FLOAT);

package N_S_INOUT is new ENUMERATION_IO (NORTH_SOUTH);
package E_W_INOUT is new ENUMERATION IO (EAST_WEST);
use NATURAL_INOUT, FLOAT_INOUT, N_S_INOUT, E_W_INOUT;

begin

-- Open RS-232 comm port connected to GPS
OPEN (THE_FILE, IN _FILE, NAME => “/dev/ttya”);

loop -- Until position data is fully read in
GET (THE_FILE, CHAR); -- Read the next character from the GPS string
if NOT IN_STRING then -- If start character not yet found
if CHAR = ‘[then -- Start character found
IN STRING := TRUE;

end if;
else -~ Start character has been found

—-- Skip over next 29 characters, irrelevant data

for I in 1 .. 29 loop
GET (THE_FILE, CHAPR);

247

end loop;

-- Get data that pertains to OWNSHIP’s GLOBAL_POSITION
GET (THE_FILE, LAT DEG, 2);

GET (THE FILE, CHAR);

GET (THE_FILE, LAT_MIN FL, 7);

GET (THE_FILE, LAT DIR);

GET (THE_FILE, CHAR);

GET (THE_FILE, LONG_DEG, 3); ’
GET (THE_FILE, CHAR);

GET (THE FILE, LONG_MIN FL, 7); -
GET (THE FILE, LONG_DIR);

-- Close the comm port
CLOSE (THE FILE);

-- GPS does not send minutes and seccnds, but rather sends minutes as
-- a floating pcint number. The 4 statements below convert that
-- floating point number to minutes and seconds as required to fill a
-- GLOBAL_POSITION.
LAT MIN := NATURAL (LAT_MIN_FL ~ 2.5);
LAT_SEC := NATURAL ((LAT_MIN_FL - FLOAT (LAT_MIN)) ~
60.0 - 0.5);
NATURAL (LONG MIN FL - 0.5);
NATURAL ((LONG_MIN_FL - FLOAT (LONG_MIN)) *
60.0 - 0.5);

LONG_MIN
LONG_SEC

-- Fill the GLOBAL OBSERVATION record with the above positioen,
-~ current system time, and a course and speed of 0.0, 0.0.
-- Procedures to calculate actual ccurse and speed are found
-— in TRACK_PKG.
OWN_OBS.POSITION := MAKE GLOBAL_POSITION

(LAT DIR, LAT DEG, LAT_MIN, LAT SEC,

LONG_DIR, LONG DEG, LONG MIN, LONG_SEC);

OWN_OBS.OBSERVATION_ TIME NOW;
OWN_OBS.COURSE_AND_ SPEED MAKE_CARTESIAN_VECTOR_2 (0.0, 0.0);

return OWN_OBS;

end if;

248

end loop;

end GET_GPS_UPDATE;

end NAVIGATION PKG;

249

APPENDIX U

M_SERIES_MSG_PACKAGE

-— Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

..

-— Description : Defines abstract data types M_SERIES_MSG,
M_SERIES_MSG_BUFFER

-- and their associated functions and procedures

package M_SERIES_MSG_PKG is
type M_SERIES MSG is private;
type M_SERIES MSG_BUFFER is private;

-- Reads in an individual M_SERIES_MSG from the LINK processor
procedure GET M SERIES_MSG_FROM LINK
(MSG : out M_SERIES MSG);

—- Loops until START TRANSMISSION signal is found on LINK.

-~ Once START TRANSMISSION signal found,

-~ calls GET_M_SERIES_MSG_FROM_LINK until END TRANSMISSION

-~ signal found.

-- Each M_SERIES_MSG retrieved is appended to M_SERIES MSG BUFFER
procedure FILL M SERIES MSG_BUFFER

(MSG_BUFF : out M_SERIES_MSG BUFFER);

250

--other functions/procedures to retrieve M SERIES MSG,
--M _SERIES_MSG_BUFFER record items to be completed in
-- follow-on thesis work

private
type M_SERIES MSG is
record
- to be completed in follow-on thesis work

end record;

type M_SERIES MSG_BUFFER is
-- some data structure of M SERIES_MSG types

end M_SERIES_MSG_PKG;

251

APPENDIX V

PROCESS_LINK_TRACK_PACKAGE

~- Authors : Richard T. Irwin
-~ Willie K. Bolick

-- Date : 29 August 1991

..

-- Description : Defines procedure PROCESS MSG BUFFER
-- PROCESS_LINK_ TRACKS

and task

with INTEGRATION SYSTEM PKG, M SERIES _MSG_PKG, LINK_PKG, TRACK PKG,

SYSTEM_STATUS_PKG;

use INTEGRATION_SYSTEM PKG, M SERIES MSG PKG, LINK_PKG, TRACK_PKG,

SYSTEM STATUS_PKG;

package PROCESS_LINK TRACKS_PKG is

procedure PROCESS_MSG BUFFER
(MSG_BUFF : in M_SERIES_MSG_BUFFER);

task PROCESS_LINK_ TRACKS;

end PROCESS_LINK_TRACKS_ PKG;

package body PROCESS_LINK TRACKS PKG is

252

procedure PROCESS_MSG_BUFFER
(MSG_BUFF : in M SERIES MSG_BUFFER) is

begin

-- Uses procedures/functions in LINK_PKG, TRACK _PKG to

-— break down MSG_BUFF into individual M_SERIES_MSGs and

-- convert them to link TRACKS, altering/adding them to the
-- TRACK_DATABASE as necessary (using INTEGRATION_SYSTEM
-- entry calls)

end PROCESS _MSG_BUFFER;

task body PROCESS LINK TRACKS is

MSG_BUFF : M_SERIES MSG_BUFFER;
SENSER STATUS : STATUS;

begin

loop

-- Get synch signal from INTEGRATION_ SYSTEM PKG.LINK_CYCLE
LINK _CYCLE.START LINK UPDATE;

-- See if there’s anything to process
INTEGRATION_SYSTEM.GET_SENSOR STATUS (LINK, SENSER STATUS);

if SENSER_STATUS = UP then

-- Get the msqg buffer
FILL M SERIES_MSG BUFFER (MSG_BUFF);

-- Process the buffer into separate msgs and possibly LINK TRACKs
PROCESS_MSG_BUFFER (MSG_BUFF);

end if;

end loop;

exception

253

when STATUS_ERROR | CONSTRAINT ERROR =>
INTEGRATION SYSTEM.SET_SENSOR_STATUS (LINK, DOWN);

end PROCESS_LINK TRACKS;

end PROCESS_LINK_TRACKS_PKG;

254

APPENDIX W

RELATIVE_TIME_PACKAGE

-- Authors : Richard T. Irwin
-- Willie K. Bolick

—-- Date : 29 August 1991

..

--~ Description : Defines data type RELATIVE TIME and associated
functions

package RELATIVE_TIME PKG is
subtype RELATIVE TIME is FLOAT; -- Units : seconds

~--Returns total seconds, given hours, minutes, seconds
function MAKE RELATIVE TIME

(HOURS, MINUTES : NATURAL;

SECONDS : FLOAT) return RELATIVE_TIME;

~- Returns whole hours of a day, given seconds of a day
function HOURS
(T : RELATIVE TIME) return NATURAL;

~-- Returns whole minutes of an hour, given seconds of a day
function MINUTES

(T : RELATIVE TIME) return NATURAL;

~-- Returns seconds of a minute, given seconds of a day
function SECONDS

255

(T : RELATIVE_TIME) return FLOAT;

pragma INLINE (MAKE RELATIVE TIME, HOURS, MINUTES, SECONDS);

end RELATIVE_TIME PKG;

-- Authors : Richard T. Irwin
-- Willie K. Bolick

-- Date : 29 August 1991

function MAKE RELATIVE TIME

(HOURS, MINUTES : NATURAL;

SECONDS : FLOAT) return RELATIVE_TIME is
begin

return FLOAT (HOURS * 3600) + FLOAT (MINUTES * 60) + SECONDS;

end MAKE_RELATIVE TIME;

function HOURS
(T : RELATIVE _TIME) return NATURAL is

begin

return NATURAL (T / 3600.0 - 0.5); [
end HOURS;

256

................................

function MINUTES
(T : RELATIVE TIME) return NATURAL is

begin

return NATURAL ((T - RELATIVE _TIME (HOURS (T) * 3600)) /
60.0 - 0.5);

end MINUTES;

.................................

function SECONDS
(T : RELATIVE_TIME) return FLOAT is

begin

return T - FLOAT (HOURS (T) * 3600) - FLOAT (MINUTES (T) * 60);
end SECONDS;

..

end RELATIVE TIME_PKG;

257

APPENDIX X

GPS CONNECTION CONSIDERATIONS

The connection between the Global_Positioning_Subsystem (Trnimble 4000) and the
SUN Microstation SPARCstation 2 is with a cable using the RS-232 port on the Tnmble
4000 and Comm-port 1 on the SPARCstation. A proper setup of the connectors pins at each
end of the cable is necessary to insure data transfer. The proper setup follows:

Trimble 4000 RS-232 connector pins (See Figure 20):

GROUND:= GROUND;
TXD(SEND):= SEND;
RXD(RECEIVE):= BLANK (no pin);

Gkoind

TDX/RDX__g.

RS-232 Connector

Figure 27: GPS CONNECT

SPARCstation Comm-port 1:
GROUND:= GROUND;
TXD(SEND:= BLANK (no pin);
RXD(RECEIVE):= RECEIVE;

258

The network configuration in this case is simply a DTE setup in the Tnmble 4000 and
a DCE in the SPARCstation. This setup is necessary because the Trimble 4000 will shut
down with an interrupt, if the SUN, via the RXD pin sends a “ready to receive” signal

accommodating the Trimble 4000 PROTOCOL.

259

[Ref. 1]

[Ref. 2]

[Ref. 3]

[Ref. 4]

[Ref. 5]

[Ref. 6]

[Ref. 7]

[Ref. 8]

[Ref. 9]

LIST OF REFERENCES

Commander, Naval Sea Systems Command UNCLASSIFIED Letter 9410
OPR:61Y Serial 61Y/1036 to Superintendent, Naval Postgraduate School,
Subject: Statement of Work for Low Cost Combat Direction System, 20
December 1988.

Department of the Navy, (NAVSEA) 0967-LP-027-8602 System
Engineering Handbook Vol 1. Combat Direction System Model 5, February
1985.

Seveney, J., Steinberg, G.P,, “Requirements Analysis for a Low Cost Combat
Direction System”, Master’s Thesis, Naval Postgraduate School, Monterey,
CA.. June,1990.

Department of the Navy, Military Specification(CONFIDENTIAL
NAVSEA) 0967-LP-027-8635, Combat Direction System (CDS)
Specification for Surface for Surface Ships (Model 4.1) (U), Vol. 1, Revision
5, April 1988.

Department of the Navy. Military Specification(CONFIDENTIAL
NAVSEA) 0967-LP-027-8635, Combat Direction System (CDS)
Specification for Surface for Surface Ships (Model 4.1) (U), Vol. 2, Revision
S. April 1988.

Department of Defense Directive 5200.28, Security Requirements for
Automatic Data Processing (ADP) Systems, 18 December 1972.

E. Yourdon, “Modern Structured Analysis”, Yourdon Press by Prentice Hall,
N.J.,1989.

A. Tanenbaum. “Structured Computer Organization”, Prentice Hall, Inc.,
Englewood Cliffs, N.J.,1984.

V. Berzins and Lugi, “Software Engineering with Abstractions: An
Integrated Approach to Software Development using Ada”, Addison-
Wesley.1988.

260

[Ref. 10] D. Bieen, P. Getto. A. Apodaca, “Object-Oriented Programming in a
Conventional Programming Environment”, Computer Society Press of the
IEEE. Washington,DC,1989.

[Ref. 11] Grady Booch, “Software Engineering with Ada”. Benjamin Cummings
Publishing Company.1983.

[Ref. 12] R. Elmasn, S.B. Navathe, “Fundamentals of the Database Systems”, The
Benjamin/Cummings Publishing Company,Inc., Redwood City, CA.,1989.

[Ref. 13] S. Faulk and D. Pamnas, “On Synchronization in Hard-Real_Time Systems”,
Comm. of the ACM 31, 3, Mar 1988, pp 274-287.

[Ref. 14] W. Lorensen, “Object-Oriented Software Development in a Non-Object-
Oriented Environment.” General Electric Technical Infermation Series
Report 86CRD133.1986.

[Ref. 15] B. Meyer. “Object-Oriented Software Construction”, Prentice Hall, Inc..
Englewood Cliffs, NJ.1988.

[Ref. 16] Buhn, R., Karan, G., Hayse. C.. Woodside, C., “Software CAD: a
Revolutionary Approach”, IEEE Transactions on Software Engineering, Voi
15. No.3, pp235-249, Mar 89.

[Ref 17] Collins, M. J. Stratford-, “Ada: A Programmer’s Conversion Course”, R. J.
Acford Press. Chichester, West Sussex, England, 1982.

[Ref. 18] Dillon. L., “Verifying General Safety Properties of Ada Tasking Programs”.
IEEE Transactions of Software Engineering, Vol 16. No. 1, p51-67, Jan 90.

[Ref. 19] Guaspari, D., Marceau, C., Polak, W., “Formal Verification of Ada
Programs”. IEEE Transactions on Software Engineering, Vol 16, No. 9.
p1058-1076, Sep 90.

[Ref.20] Jalote. Pankaj, “Functional Refinement and Nested Objects for Object-
Onented Design”. IEEE Transactions on Software Engineering. Vol 15, No.
3. p264-270. Mar 89.

261

[Ref. 21]

[Ref. 22}

[Ref. 23]

[Ref. 24]

[Ref. 25]

[Ref. 26

[Ref. 27]

[Ref. 28)

[Ref. 29]

[Ref.30]

[Ref. 31]

[Ref. 32]

Moser, Louise, “Data Dependency Graphs for Ada Programs”, IEEE
Transactions on Software Engineering, Vol. 16. No. 5, P498-527, May 90.

Sha, L., Goodenough, J.B.. “Real-Time Scheduling Theory and Ada”,
Computer, Vol 23, No. 4, Published by IEEE Computer Society, p53-62, Apr
90.

Sommerville, 1., Welland, R., Beer, S.. “Describing Software Design
Methodologies”, The Computer Journal, The British Computer Society, Vol
30, No. 2, p128-133, Apr 87.

Schweiger, Jeffrey M. , “Structuring a Software Tool for Detecting Deadlock
Potential from the Formal Specification of a Distributed System”, Master’s
Thesis, Naval Postgraduate School, Monterey, CA., unfinished.

Vick, C. R.. Ramamoorthy, C. V., “The Handbook of Software Engineering”,
Van Nostrand Reinhold Company, New York, NY,1984.

Department of Defense Military Standard 2167-A, Defense System Software
Development, 29 February 1988,

Department of Defense Military Standard 2168, Defense System Software
Quality Program, 29 February 1988,

American National Standard Institute Military Standard 1815A-1983,
Reference Manual for the Ada Programming Language, 17 February 1983.

Department of Defense. Military Standard 480. Configuration Controt
Engineering changes. Deviations. and walvers.

OP_SPEC 411.2 (CONFIDENTIAL). Naval Tactical Data System Model 4
Link 11 Operational Specification, Rev 2, 15 August 1985.

Department of Defense Military Standard 490. Specification Practices, May
1972.

SUN MICROSYSTEMS, SUN Systems overview, February 1986.

202

[Ref. 33]

[Ref. 34]

[Ref. 35]

[Ref. 36]

[Ref. 37]

[Ref. 38]

[Ref. 39]

[Ref. 40]

[Ref. 41]

Skansholm, Jan, “Ada From The Beginning”, Addison-Wesley publishing
company, New York, NY, 1988.

Chin. Yu-Chi, “The Navigation Data Logger for a Suitcase Navigation
System”, Master’s Thesis, Naval Postgraduate School. Monterey, CA.,
June,1991.

DePaula Everton G., “A Tactical Database for the Low Cost Combat
Direction System”, Master’s Thesis, Naval Postgraduate School, Monterey,
CA., December, 1990

Department of Defense Military Standard 1679, Weapons System Software
Development, December 1978.

Naval Sea System Instruction 5400.57, Technical Responsibility and
Authonty to perform Engineering Functions for Combat Subsystems and
Equipment, June 1978.

OPNAV Instruction 7700.1, Configuration of CDS and Combat Systems for
General Purpose Forces, 31 August 1973.

Interview between Mr. Dan Edwards, Naval Ocean Systems Center (code
412). San Diego. CA., and the authors. 9 July 1991.

Interview between Mr. Roy, Director Research (7162). Logicon, San Diego,
CA.. and the authors. 5 August 1991.

Interview between Mr. George Sadowski, Fleet Combat Direction System
Support Activity, Dam Neck, VA.. and the authors, 22 June 1991.

263

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandna, VA 22304-6145

Dudley Knox Library
Code 52

Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

Office of the Chief of Naval Operations
Code OP-941
Washington, D.C. 20350-2000

Commander

Naval Sea Systems Command
ATTN: LCDR Scott Kelly
Code 06D3131

Washington, D.C. 20362-5101

Commander

Naval Ocean Systems Center
Code 451

San Diego, CA 92152-5000

Commander

Naval Ocean Systems Center
Code 431

ATTN: Dan Edwards

San Diego, CA 92152-5000

264

Commander

Naval Sea Systems Command
ATTN: William L. Wilder
PMS-4123H

Arlington, VA 22202-5101

Dr. Valdis Berzins

Code 52Be

Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

Dr. Luqi

Code 52Lq

Computer Science Department
Naval Postgraduate School
Monterey, CA 93940

LCDR (sel) Willie K. Bolick
1508 Willowbend Drive
Gautier, MS 39553

LT Richard T. Irwin
5130 Navajo Trail
Harrison, MI 48625

205

